Effects of a Maximal Energy Scale in Thermodynamics for Photon Gas and Construction of Path Integral
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we discuss some well-known theoretical models where an observer-independent energy scale or a length scale is present. The presence of this invariant scale necessarily deforms the Lorentz symmetry. We study different aspects and features of such theories about how modifications arise due to this cutoff scale. First we study the formulation of energy-momentum tensor for a perfect fluid in doubly special relativity (DSR), where an energy scale is present. Then we go on to study modifications in thermodynamic properties of photon gas in DSR. Finally we discuss some models with generalized uncertainty principle (GUP).
Keywords: invariant energy scale; doubly special relativity (DSR); generalized uncertainty principle (GUP).
@article{SIGMA_2014_10_a103,
     author = {Sudipta Das and Souvik Pramanik and Subir Ghosh},
     title = {Effects of {a~Maximal} {Energy} {Scale} in {Thermodynamics} for {Photon} {Gas} {and~Construction} of {Path} {Integral}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a103/}
}
TY  - JOUR
AU  - Sudipta Das
AU  - Souvik Pramanik
AU  - Subir Ghosh
TI  - Effects of a Maximal Energy Scale in Thermodynamics for Photon Gas and Construction of Path Integral
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a103/
LA  - en
ID  - SIGMA_2014_10_a103
ER  - 
%0 Journal Article
%A Sudipta Das
%A Souvik Pramanik
%A Subir Ghosh
%T Effects of a Maximal Energy Scale in Thermodynamics for Photon Gas and Construction of Path Integral
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a103/
%G en
%F SIGMA_2014_10_a103
Sudipta Das; Souvik Pramanik; Subir Ghosh. Effects of a Maximal Energy Scale in Thermodynamics for Photon Gas and Construction of Path Integral. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a103/

[1] Albrecht A., Magueijo J., “A time varying speed of light as a solution to cosmological puzzles”, Phys. Rev. D, 59 (1999), 043516, 13 pp., arXiv: astro-ph/9811018 | DOI

[2] Alexander S., Magueijo J., Noncommutative geometry as a realization of varying speed of light cosmology, arXiv: hep-th/0104093

[3] Ali A. F., Majumder B., Towards a cosmology with minimal length and maximal energy, arXiv: 1402.5104

[4] Amati D., Ciafaloni M., Veneziano G., Can spacetime be probed below the string size?, Phys. Lett. B, 216 (1989), 41–47 | DOI | MR

[5] Amelino-Camelia G., “Testable scenario for relativity with minimum-length”, Phys. Lett. B, 510 (2001), 255–263, arXiv: hep-th/0012238 | DOI | MR | Zbl

[6] Amelino-Camelia G., “Doubly-special relativity: first results and key open problems”, Internat. J. Modern Phys. D, 11 (2002), 1643–1669, arXiv: gr-qc/0210063 | DOI | MR | Zbl

[7] Amelino-Camelia G., “Relativity: special treatment”, Nature, 418 (2002), 34–35, arXiv: gr-qc/0207049 | DOI | MR

[8] Amelino-Camelia G., “Quantum-spacetime phenomenology”, Living Rev. Relativity, 16 (2013), 8, 137 pp., arXiv: 0806.0339 | DOI | MR

[9] Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., “The principle of relative locality”, Phys. Rev. D, 84 (2011), 084010, 13 pp., arXiv: 1101.0931 | DOI

[10] Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., “Relative locality and the soccer ball problem”, Phys. Rev. D, 84 (2011), 087702, 5 pp., arXiv: 1104.2019 | DOI

[11] Amelino-Camelia G., Piran T., “Planck-scale deformation of Lorentz symmetry as a solution to the ultrahigh energy cosmic ray and the TeV-photon paradoxes”, Phys. Rev. D, 64 (2001), 036005, 12 pp., arXiv: astro-ph/0008107 | DOI | MR

[12] Awad A., Ali A. F., “Planck-scale corrections to Friedmann equation”, Cent. Eur. J. Phys., 12 (2014), 245–255, arXiv: 1403.5319 | DOI

[13] Banerjee R., Kulkarni S., Samanta S., “Deformed symmetry in Snyder space and relativistic particle dynamics”, J. High Energy Phys., 2006:5 (2006), 077, 22 pp., arXiv: hep-th/0602151 | DOI | MR

[14] Banerjee R., Kumar K., Roychowdhury D., “Symmetries of {S}nyder–de {S}itter space and relativistic particle dynamics”, J. High Energy Phys., 2011:3 (2011), 060, 14 pp., arXiv: 1101.2021 | DOI | MR

[15] Bertolami O., Zarro C. A. D., “Towards a noncommutative astrophysics”, Phys. Rev. D, 81 (2010), 025005, 8 pp., arXiv: 0908.4196 | DOI

[16] Bojowald M., Quantum gravity effects on space-time, arXiv: 1002.2618

[17] Bruno N. R., Amelino-Camelia G., Kowalski-Glikman J., “Deformed boost transformations that saturate at the Planck scale”, Phys. Lett. B, 522 (2001), 133–138, arXiv: hep-th/0107039 | DOI | Zbl

[18] Camacho A., Macías A., “Thermodynamics of a photon gas and deformed dispersion relations”, Gen. Relativity Gravitation, 39 (2007), 1175–1183, arXiv: gr-qc/0702150 | DOI | MR | Zbl

[19] Cohen A. G., Glashow S. L., “Very special relativity”, Phys. Rev. Lett., 97 (2006), 021601, 3 pp., arXiv: hep-ph/0601236 | DOI | MR | Zbl

[20] Das S., Ghosh S., Roychowdhury D., “Relativistic thermodynamics with an invariant energy scale”, Phys. Rev. D, 80 (2009), 125036, 6 pp., arXiv: 0908.0413 | DOI

[21] Das S., Ghosh S., Mignemi S., “Non-commutative spacetime in very special relativity”, Phys. Lett. A, 375 (2011), 3237–3242, arXiv: 1004.5356 | DOI | MR | Zbl

[22] Das S., Pramanik S., “Path integral for nonrelativistic generalized uncertainty principle corrected Hamiltonian”, Phys. Rev. D, 86 (2012), 085004, 7 pp., arXiv: 1205.3919 | DOI

[23] Das S., Roychowdhury D., “Thermodynamics of photon gas with an invariant energy scale”, Phys. Rev. D, 81 (2010), 085039, 7 pp., arXiv: 1002.0192 | DOI

[24] Das S., Vagenas E. C., “Universality of quantum gravity corrections”, Phys. Rev. Lett., 101 (2008), 221301, 4 pp., arXiv: 0810.5333 | DOI

[25] Daszkiewicz M., Lukierski J., Woronowicz M., “Towards quantum noncommutative {$\kappa$}-deformed field theory”, Phys. Rev. D, 77 (2008), 105007, 10 pp., arXiv: 0708.1561 | DOI | MR

[26] Deriglazov A. A., “Poincaré covariant mechanics on noncommutative space”, J. High Energy Phys., 2003:3 (2003), 021, 9 pp., arXiv: hep-th/0211105 | DOI | MR

[27] Dirac P. A. M., Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series, 2, Belfer Graduate School of Science, New York, 1967 | MR

[28] Feynman R. P., Hibbs A. R., Quantum mechanics and path integral, McGraw-Hill, New York, 1965 | Zbl

[29] Gangopadhyay S., Dutta A., Saha A., “Generalized uncertainty principle and black hole thermodynamics”, Gen. Relativity Gravitation, 46 (2014), 1661, 10 pp., arXiv: 1307.7045 | DOI | MR | Zbl

[30] Garay L. J., “Quantum gravity and minimum length”, Internat. J. Modern Phys. A, 10 (1995), 145–166, arXiv: gr-qc/9403008 | DOI

[31] Garrod C., “Hamiltonian path-integral methods”, Rev. Modern Phys., 38 (1966), 483–494 | DOI | MR | Zbl

[32] Ghosh S., “D{SR} relativistic particle in a {L}agrangian formulation and non-commutative spacetime: a gauge independent analysis”, Phys. Lett. B, 648 (2007), 262–265, arXiv: hep-th/0602009 | DOI | MR | Zbl

[33] Ghosh S., Pal P., “{$\kappa$}-{M}inkowski spacetime through exotic “oscillator””, Phys. Lett. B, 618 (2005), 243–251, arXiv: hep-th/0502192 | DOI | MR | Zbl

[34] Ghosh S., Pal P., “Deformed special relativity and deformed symmetries in a canonical framework”, Phys. Rev. D, 75 (2007), 105021, 11 pp., arXiv: hep-th/0702159 | DOI | MR

[35] Ghosh S., Roy P., “Stringy coherent states inspired by generalized uncertainty principle”, Phys. Lett. B, 711 (2012), 423–427, arXiv: 1110.5136 | DOI

[36] Gibbons G. W., Gomis J., Pope C. N., “General very special relativity is {F}insler geometry”, Phys. Rev. D, 76 (2007), 081701, 5 pp., arXiv: 0707.2174 | DOI | MR

[37] Girelli F., Konopka T., Kowalski-Glikman J., Livine E. R., “Free particle in deformed special relativity”, Phys. Rev. D, 73 (2006), 045009, 14 pp., arXiv: hep-th/0512107 | DOI | MR

[38] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, Academic Press, New York–London, 1965 | MR

[39] Granik A., Maguejo–Smolin transformation as a consequence of a specific definition of mass, velocity, and the upper limit on energy, arXiv: hep-th/0207113

[40] Greiner W., Stocker N., Thermodynamics and statistical mechanics, Springer-Verlag, New York, 1995 | Zbl

[41] Hanson A. J., Regge T., Teitelboim C., Constrained Hamiltonian system, Accademia Nazionale Dei Lincei, Roma, 1976

[42] Hossenfelder S., “A note on theories with a minimal length”, Classical Quantum Gravity, 23 (2006), 1815–1821, arXiv: hep-th/0510245 | DOI | MR | Zbl

[43] Hossenfelder S., “Multiparticle states in deformed special relativity”, Phys. Rev. D, 75 (2007), 105005, 8 pp., arXiv: hep-th/0702016 | DOI | MR

[44] Hossenfelder S., “Minimal length scale scenarios for quantum gravity”, Living Rev. Relativity, 16 (2013), 2, 90 pp., arXiv: 1203.6191 | DOI

[45] Hossenfelder S., “The soccer-ball problem”, SIGMA, 10 (2014), 074, 8 pp., arXiv: 1403.2080 | DOI | MR | Zbl

[46] Hossenfelder S., Bleicher M., Hofmann S., Ruppert J., Scherer S., Stöcker H., “Signatures in the Planck regime”, Phys. Lett. B, 575 (2003), 85–99, arXiv: hep-th/0305262 | DOI | Zbl

[47] Judes S., Visser M., “Conservation laws in “doubly special relativity””, Phys. Rev. D, 68 (2003), 045001, 4 pp., arXiv: gr-qc/0205067 | DOI | MR | Zbl

[48] Kempf A., “Non-pointlike particles in harmonic oscillators”, J. Phys. A: Math. Gen., 30 (1997), 2093–2101, arXiv: hep-th/9604045 | DOI | MR | Zbl

[49] Kempf A., Mangano G., “Minimal length uncertainty relation and ultraviolet regularisation”, Phys. Rev. D, 55 (1997), 7909–7920, arXiv: hep-th/9612084 | DOI | MR

[50] Kempf A., Mangano G., Mann R. B., “Hilbert space representation of the minimal length uncertainty relation”, Phys. Rev. D, 52 (1995), 1108–1118, arXiv: hep-th/9412167 | DOI | MR

[51] Kowalski-Glikman J., Nowak S., “Doubly special relativity theories as different bases of {$\kappa$}-{P}oincaré algebra”, Phys. Lett. B, 539 (2002), 126–132, arXiv: hep-th/0203040 | DOI | MR | Zbl

[52] Ling Y., Wu Q., “The big bounce in rainbow universe”, Phys. Lett. B, 687 (2010), 103–109, arXiv: 0811.2615 | DOI

[53] Lukierski J., Nowicki A., “Doubly special relativity versus {$\kappa$}-deformation of relativistic kinematics”, Internat. J. Modern Phys. A, 18 (2003), 7–18, arXiv: hep-th/0203065 | DOI | MR | Zbl

[54] Maggiore M., “A generalized uncertainty principle in quantum gravity”, Phys. Lett. B, 304 (1993), 65–69, arXiv: hep-th/9301067 | DOI | MR

[55] Maggiore M., “The algebraic structure of the generalized uncertainty principle”, Phys. Lett. B, 319 (1993), 83–86, arXiv: hep-th/9309034 | DOI | MR

[56] Maggiore M., “Quantum groups, gravity, and the generalized uncertainty principle”, Phys. Rev. D, 49 (1994), 5182–5187, arXiv: hep-th/9305163 | DOI | MR

[57] Magueijo J., “New varying speed of light theories”, Rep. Progr. Phys., 66 (2003), 2025–2068, arXiv: astro-ph/0305457 | DOI | MR

[58] Magueijo J., Smolin L., “Lorentz invariance with an invariant energy scale”, Phys. Rev. Lett., 88 (2002), 190403, 4 pp., arXiv: hep-th/0112090 | DOI

[59] Magueijo J., Smolin L., “Generalized {L}orentz invariance with an invariant energy scale”, Phys. Rev. D, 67 (2003), 044017, 12 pp., arXiv: gr-qc/0207085 | DOI | MR

[60] Magueijo J., Smolin L., “Gravity's rainbow”, Classical Quantum Gravity, 21 (2004), 1725–1736, arXiv: gr-qc/0305055 | DOI | MR | Zbl

[61] Majhi B. R., Vagenas E., “Modified dispersion relation, photon's velocity, and Unruh effect”, Phys. Lett. B, 725 (1993), 477–480, arXiv: 1307.4195 | DOI

[62] Mersini-Houghton L., Bastero-Gil M., Kanti P., “Relic dark energy from transPlanckian regime”, Phys. Rev. D, 64 (2001), 043508, 9 pp., arXiv: hep-ph/0101210 | DOI | MR

[63] Mignemi S., “Transformations of coordinates and {H}amiltonian formalism in deformed special relativity”, Phys. Rev. D, 68 (2003), 065029, 6 pp., arXiv: gr-qc/0304029 | DOI | MR

[64] Mignemi S., “Doubly special relativity and translation invariance”, Phys. Lett. B, 672 (2009), 186–189, arXiv: 0808.1628 | DOI | MR

[65] Misner C. W., Thorne K. S., Wheeler J. A., Gravitation, W. H. Freeman and Co., San Francisco, Calif., 1973 | MR

[66] Moffat J. W., “Superluminary universe: a Possible solution to the initial value problem in cosmology”, Internat. J. Modern Phys. D, 2 (1993), 351–366, arXiv: gr-qc/9211020 | DOI

[67] Pathria R. K., Statistical mechanics, Butterworth-Heinemann, Oxford, 1996 | Zbl

[68] Pinzul A., Stern A., “Space-time noncommutativity from particle mechanics”, Phys. Lett. B, 593 (2004), 279–286, arXiv: hep-th/0402220 | DOI | MR | Zbl

[69] Pramanik S., Ghosh S., “G{UP}-based and {S}nyder noncommutative algebras, relativistic particle models, deformed symmetries and interaction: a unified approach”, Internat. J. Modern Phys. A, 28 (2013), 1350131, 15 pp., arXiv: 1301.4042 | DOI | MR | Zbl

[70] Quesne C., Tkachuk V. M., “Composite system in deformed space with minimal length”, Phys. Rev. A, 81 (2010), 012106, 8 pp., arXiv: 0906.0050 | DOI

[71] Snyder H. S., “Quantized space-time”, Phys. Rev., 71 (1947), 38–41 | DOI | MR | Zbl

[72] Tawfik A., Magdy H., Farag Ali A., “Effects of quantum gravity on the inflationary parameters and thermodynamics of the early universe”, Gen. Relativity Gravitation, 45 (2013), 1227–1246, arXiv: 1208.5655 | DOI | MR | Zbl

[73] Townsend P. K., “Small-scale structure of spacetime as the origin of the gravitational constant”, Phys. Rev. D, 15 (1977), 2795–2801 | DOI | MR

[74] Veneziano G., “A stringy nature needs just two constants”, Europhys. Lett., 2 (1986), 199–204 | DOI

[75] Weinberg S., Gravitation and cosmology: principles and applications of general theory of relativity, John Wiley Sons, London, 1972