@article{SIGMA_2014_10_a103,
author = {Sudipta Das and Souvik Pramanik and Subir Ghosh},
title = {Effects of {a~Maximal} {Energy} {Scale} in {Thermodynamics} for {Photon} {Gas} {and~Construction} of {Path} {Integral}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a103/}
}
TY - JOUR AU - Sudipta Das AU - Souvik Pramanik AU - Subir Ghosh TI - Effects of a Maximal Energy Scale in Thermodynamics for Photon Gas and Construction of Path Integral JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a103/ LA - en ID - SIGMA_2014_10_a103 ER -
%0 Journal Article %A Sudipta Das %A Souvik Pramanik %A Subir Ghosh %T Effects of a Maximal Energy Scale in Thermodynamics for Photon Gas and Construction of Path Integral %J Symmetry, integrability and geometry: methods and applications %D 2014 %V 10 %U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a103/ %G en %F SIGMA_2014_10_a103
Sudipta Das; Souvik Pramanik; Subir Ghosh. Effects of a Maximal Energy Scale in Thermodynamics for Photon Gas and Construction of Path Integral. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a103/
[1] Albrecht A., Magueijo J., “A time varying speed of light as a solution to cosmological puzzles”, Phys. Rev. D, 59 (1999), 043516, 13 pp., arXiv: astro-ph/9811018 | DOI
[2] Alexander S., Magueijo J., Noncommutative geometry as a realization of varying speed of light cosmology, arXiv: hep-th/0104093
[3] Ali A. F., Majumder B., Towards a cosmology with minimal length and maximal energy, arXiv: 1402.5104
[4] Amati D., Ciafaloni M., Veneziano G., Can spacetime be probed below the string size?, Phys. Lett. B, 216 (1989), 41–47 | DOI | MR
[5] Amelino-Camelia G., “Testable scenario for relativity with minimum-length”, Phys. Lett. B, 510 (2001), 255–263, arXiv: hep-th/0012238 | DOI | MR | Zbl
[6] Amelino-Camelia G., “Doubly-special relativity: first results and key open problems”, Internat. J. Modern Phys. D, 11 (2002), 1643–1669, arXiv: gr-qc/0210063 | DOI | MR | Zbl
[7] Amelino-Camelia G., “Relativity: special treatment”, Nature, 418 (2002), 34–35, arXiv: gr-qc/0207049 | DOI | MR
[8] Amelino-Camelia G., “Quantum-spacetime phenomenology”, Living Rev. Relativity, 16 (2013), 8, 137 pp., arXiv: 0806.0339 | DOI | MR
[9] Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., “The principle of relative locality”, Phys. Rev. D, 84 (2011), 084010, 13 pp., arXiv: 1101.0931 | DOI
[10] Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., “Relative locality and the soccer ball problem”, Phys. Rev. D, 84 (2011), 087702, 5 pp., arXiv: 1104.2019 | DOI
[11] Amelino-Camelia G., Piran T., “Planck-scale deformation of Lorentz symmetry as a solution to the ultrahigh energy cosmic ray and the TeV-photon paradoxes”, Phys. Rev. D, 64 (2001), 036005, 12 pp., arXiv: astro-ph/0008107 | DOI | MR
[12] Awad A., Ali A. F., “Planck-scale corrections to Friedmann equation”, Cent. Eur. J. Phys., 12 (2014), 245–255, arXiv: 1403.5319 | DOI
[13] Banerjee R., Kulkarni S., Samanta S., “Deformed symmetry in Snyder space and relativistic particle dynamics”, J. High Energy Phys., 2006:5 (2006), 077, 22 pp., arXiv: hep-th/0602151 | DOI | MR
[14] Banerjee R., Kumar K., Roychowdhury D., “Symmetries of {S}nyder–de {S}itter space and relativistic particle dynamics”, J. High Energy Phys., 2011:3 (2011), 060, 14 pp., arXiv: 1101.2021 | DOI | MR
[15] Bertolami O., Zarro C. A. D., “Towards a noncommutative astrophysics”, Phys. Rev. D, 81 (2010), 025005, 8 pp., arXiv: 0908.4196 | DOI
[16] Bojowald M., Quantum gravity effects on space-time, arXiv: 1002.2618
[17] Bruno N. R., Amelino-Camelia G., Kowalski-Glikman J., “Deformed boost transformations that saturate at the Planck scale”, Phys. Lett. B, 522 (2001), 133–138, arXiv: hep-th/0107039 | DOI | Zbl
[18] Camacho A., Macías A., “Thermodynamics of a photon gas and deformed dispersion relations”, Gen. Relativity Gravitation, 39 (2007), 1175–1183, arXiv: gr-qc/0702150 | DOI | MR | Zbl
[19] Cohen A. G., Glashow S. L., “Very special relativity”, Phys. Rev. Lett., 97 (2006), 021601, 3 pp., arXiv: hep-ph/0601236 | DOI | MR | Zbl
[20] Das S., Ghosh S., Roychowdhury D., “Relativistic thermodynamics with an invariant energy scale”, Phys. Rev. D, 80 (2009), 125036, 6 pp., arXiv: 0908.0413 | DOI
[21] Das S., Ghosh S., Mignemi S., “Non-commutative spacetime in very special relativity”, Phys. Lett. A, 375 (2011), 3237–3242, arXiv: 1004.5356 | DOI | MR | Zbl
[22] Das S., Pramanik S., “Path integral for nonrelativistic generalized uncertainty principle corrected Hamiltonian”, Phys. Rev. D, 86 (2012), 085004, 7 pp., arXiv: 1205.3919 | DOI
[23] Das S., Roychowdhury D., “Thermodynamics of photon gas with an invariant energy scale”, Phys. Rev. D, 81 (2010), 085039, 7 pp., arXiv: 1002.0192 | DOI
[24] Das S., Vagenas E. C., “Universality of quantum gravity corrections”, Phys. Rev. Lett., 101 (2008), 221301, 4 pp., arXiv: 0810.5333 | DOI
[25] Daszkiewicz M., Lukierski J., Woronowicz M., “Towards quantum noncommutative {$\kappa$}-deformed field theory”, Phys. Rev. D, 77 (2008), 105007, 10 pp., arXiv: 0708.1561 | DOI | MR
[26] Deriglazov A. A., “Poincaré covariant mechanics on noncommutative space”, J. High Energy Phys., 2003:3 (2003), 021, 9 pp., arXiv: hep-th/0211105 | DOI | MR
[27] Dirac P. A. M., Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series, 2, Belfer Graduate School of Science, New York, 1967 | MR
[28] Feynman R. P., Hibbs A. R., Quantum mechanics and path integral, McGraw-Hill, New York, 1965 | Zbl
[29] Gangopadhyay S., Dutta A., Saha A., “Generalized uncertainty principle and black hole thermodynamics”, Gen. Relativity Gravitation, 46 (2014), 1661, 10 pp., arXiv: 1307.7045 | DOI | MR | Zbl
[30] Garay L. J., “Quantum gravity and minimum length”, Internat. J. Modern Phys. A, 10 (1995), 145–166, arXiv: gr-qc/9403008 | DOI
[31] Garrod C., “Hamiltonian path-integral methods”, Rev. Modern Phys., 38 (1966), 483–494 | DOI | MR | Zbl
[32] Ghosh S., “D{SR} relativistic particle in a {L}agrangian formulation and non-commutative spacetime: a gauge independent analysis”, Phys. Lett. B, 648 (2007), 262–265, arXiv: hep-th/0602009 | DOI | MR | Zbl
[33] Ghosh S., Pal P., “{$\kappa$}-{M}inkowski spacetime through exotic “oscillator””, Phys. Lett. B, 618 (2005), 243–251, arXiv: hep-th/0502192 | DOI | MR | Zbl
[34] Ghosh S., Pal P., “Deformed special relativity and deformed symmetries in a canonical framework”, Phys. Rev. D, 75 (2007), 105021, 11 pp., arXiv: hep-th/0702159 | DOI | MR
[35] Ghosh S., Roy P., “Stringy coherent states inspired by generalized uncertainty principle”, Phys. Lett. B, 711 (2012), 423–427, arXiv: 1110.5136 | DOI
[36] Gibbons G. W., Gomis J., Pope C. N., “General very special relativity is {F}insler geometry”, Phys. Rev. D, 76 (2007), 081701, 5 pp., arXiv: 0707.2174 | DOI | MR
[37] Girelli F., Konopka T., Kowalski-Glikman J., Livine E. R., “Free particle in deformed special relativity”, Phys. Rev. D, 73 (2006), 045009, 14 pp., arXiv: hep-th/0512107 | DOI | MR
[38] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, Academic Press, New York–London, 1965 | MR
[39] Granik A., Maguejo–Smolin transformation as a consequence of a specific definition of mass, velocity, and the upper limit on energy, arXiv: hep-th/0207113
[40] Greiner W., Stocker N., Thermodynamics and statistical mechanics, Springer-Verlag, New York, 1995 | Zbl
[41] Hanson A. J., Regge T., Teitelboim C., Constrained Hamiltonian system, Accademia Nazionale Dei Lincei, Roma, 1976
[42] Hossenfelder S., “A note on theories with a minimal length”, Classical Quantum Gravity, 23 (2006), 1815–1821, arXiv: hep-th/0510245 | DOI | MR | Zbl
[43] Hossenfelder S., “Multiparticle states in deformed special relativity”, Phys. Rev. D, 75 (2007), 105005, 8 pp., arXiv: hep-th/0702016 | DOI | MR
[44] Hossenfelder S., “Minimal length scale scenarios for quantum gravity”, Living Rev. Relativity, 16 (2013), 2, 90 pp., arXiv: 1203.6191 | DOI
[45] Hossenfelder S., “The soccer-ball problem”, SIGMA, 10 (2014), 074, 8 pp., arXiv: 1403.2080 | DOI | MR | Zbl
[46] Hossenfelder S., Bleicher M., Hofmann S., Ruppert J., Scherer S., Stöcker H., “Signatures in the Planck regime”, Phys. Lett. B, 575 (2003), 85–99, arXiv: hep-th/0305262 | DOI | Zbl
[47] Judes S., Visser M., “Conservation laws in “doubly special relativity””, Phys. Rev. D, 68 (2003), 045001, 4 pp., arXiv: gr-qc/0205067 | DOI | MR | Zbl
[48] Kempf A., “Non-pointlike particles in harmonic oscillators”, J. Phys. A: Math. Gen., 30 (1997), 2093–2101, arXiv: hep-th/9604045 | DOI | MR | Zbl
[49] Kempf A., Mangano G., “Minimal length uncertainty relation and ultraviolet regularisation”, Phys. Rev. D, 55 (1997), 7909–7920, arXiv: hep-th/9612084 | DOI | MR
[50] Kempf A., Mangano G., Mann R. B., “Hilbert space representation of the minimal length uncertainty relation”, Phys. Rev. D, 52 (1995), 1108–1118, arXiv: hep-th/9412167 | DOI | MR
[51] Kowalski-Glikman J., Nowak S., “Doubly special relativity theories as different bases of {$\kappa$}-{P}oincaré algebra”, Phys. Lett. B, 539 (2002), 126–132, arXiv: hep-th/0203040 | DOI | MR | Zbl
[52] Ling Y., Wu Q., “The big bounce in rainbow universe”, Phys. Lett. B, 687 (2010), 103–109, arXiv: 0811.2615 | DOI
[53] Lukierski J., Nowicki A., “Doubly special relativity versus {$\kappa$}-deformation of relativistic kinematics”, Internat. J. Modern Phys. A, 18 (2003), 7–18, arXiv: hep-th/0203065 | DOI | MR | Zbl
[54] Maggiore M., “A generalized uncertainty principle in quantum gravity”, Phys. Lett. B, 304 (1993), 65–69, arXiv: hep-th/9301067 | DOI | MR
[55] Maggiore M., “The algebraic structure of the generalized uncertainty principle”, Phys. Lett. B, 319 (1993), 83–86, arXiv: hep-th/9309034 | DOI | MR
[56] Maggiore M., “Quantum groups, gravity, and the generalized uncertainty principle”, Phys. Rev. D, 49 (1994), 5182–5187, arXiv: hep-th/9305163 | DOI | MR
[57] Magueijo J., “New varying speed of light theories”, Rep. Progr. Phys., 66 (2003), 2025–2068, arXiv: astro-ph/0305457 | DOI | MR
[58] Magueijo J., Smolin L., “Lorentz invariance with an invariant energy scale”, Phys. Rev. Lett., 88 (2002), 190403, 4 pp., arXiv: hep-th/0112090 | DOI
[59] Magueijo J., Smolin L., “Generalized {L}orentz invariance with an invariant energy scale”, Phys. Rev. D, 67 (2003), 044017, 12 pp., arXiv: gr-qc/0207085 | DOI | MR
[60] Magueijo J., Smolin L., “Gravity's rainbow”, Classical Quantum Gravity, 21 (2004), 1725–1736, arXiv: gr-qc/0305055 | DOI | MR | Zbl
[61] Majhi B. R., Vagenas E., “Modified dispersion relation, photon's velocity, and Unruh effect”, Phys. Lett. B, 725 (1993), 477–480, arXiv: 1307.4195 | DOI
[62] Mersini-Houghton L., Bastero-Gil M., Kanti P., “Relic dark energy from transPlanckian regime”, Phys. Rev. D, 64 (2001), 043508, 9 pp., arXiv: hep-ph/0101210 | DOI | MR
[63] Mignemi S., “Transformations of coordinates and {H}amiltonian formalism in deformed special relativity”, Phys. Rev. D, 68 (2003), 065029, 6 pp., arXiv: gr-qc/0304029 | DOI | MR
[64] Mignemi S., “Doubly special relativity and translation invariance”, Phys. Lett. B, 672 (2009), 186–189, arXiv: 0808.1628 | DOI | MR
[65] Misner C. W., Thorne K. S., Wheeler J. A., Gravitation, W. H. Freeman and Co., San Francisco, Calif., 1973 | MR
[66] Moffat J. W., “Superluminary universe: a Possible solution to the initial value problem in cosmology”, Internat. J. Modern Phys. D, 2 (1993), 351–366, arXiv: gr-qc/9211020 | DOI
[67] Pathria R. K., Statistical mechanics, Butterworth-Heinemann, Oxford, 1996 | Zbl
[68] Pinzul A., Stern A., “Space-time noncommutativity from particle mechanics”, Phys. Lett. B, 593 (2004), 279–286, arXiv: hep-th/0402220 | DOI | MR | Zbl
[69] Pramanik S., Ghosh S., “G{UP}-based and {S}nyder noncommutative algebras, relativistic particle models, deformed symmetries and interaction: a unified approach”, Internat. J. Modern Phys. A, 28 (2013), 1350131, 15 pp., arXiv: 1301.4042 | DOI | MR | Zbl
[70] Quesne C., Tkachuk V. M., “Composite system in deformed space with minimal length”, Phys. Rev. A, 81 (2010), 012106, 8 pp., arXiv: 0906.0050 | DOI
[71] Snyder H. S., “Quantized space-time”, Phys. Rev., 71 (1947), 38–41 | DOI | MR | Zbl
[72] Tawfik A., Magdy H., Farag Ali A., “Effects of quantum gravity on the inflationary parameters and thermodynamics of the early universe”, Gen. Relativity Gravitation, 45 (2013), 1227–1246, arXiv: 1208.5655 | DOI | MR | Zbl
[73] Townsend P. K., “Small-scale structure of spacetime as the origin of the gravitational constant”, Phys. Rev. D, 15 (1977), 2795–2801 | DOI | MR
[74] Veneziano G., “A stringy nature needs just two constants”, Europhys. Lett., 2 (1986), 199–204 | DOI
[75] Weinberg S., Gravitation and cosmology: principles and applications of general theory of relativity, John Wiley Sons, London, 1972