On Certain Wronskians of Multiple Orthogonal Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider determinants of Wronskian type whose entries are multiple orthogonal polynomials associated with a path connecting two multi-indices. By assuming that the weight functions form an algebraic Chebyshev (AT) system, we show that the polynomials represented by the Wronskians keep a constant sign in some cases, while in some other cases oscillatory behavior appears, which generalizes classical results for orthogonal polynomials due to Karlin and Szegő. There are two applications of our results. The first application arises from the observation that the $m$-th moment of the average characteristic polynomials for multiple orthogonal polynomial ensembles can be expressed as a Wronskian of the type II multiple orthogonal polynomials. Hence, it is straightforward to obtain the distinct behavior of the moments for odd and even $m$ in a special multiple orthogonal ensemble – the AT ensemble. As the second application, we derive some Turán type inequalities for multiple Hermite and multiple Laguerre polynomials (of two kinds). Finally, we study numerically the geometric configuration of zeros for the Wronskians of these multiple orthogonal polynomials. We observe that the zeros have regular configurations in the complex plane, which might be of independent interest.
Mots-clés : Wronskians; algebraic Chebyshev systems; multiple orthogonal polynomials; moments of the average characteristic polynomials; multiple orthogonal polynomial ensembles; Turán inequalities; zeros.
@article{SIGMA_2014_10_a102,
     author = {Lun Zhang and Galina Filipuk},
     title = {On {Certain} {Wronskians} of {Multiple} {Orthogonal} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a102/}
}
TY  - JOUR
AU  - Lun Zhang
AU  - Galina Filipuk
TI  - On Certain Wronskians of Multiple Orthogonal Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a102/
LA  - en
ID  - SIGMA_2014_10_a102
ER  - 
%0 Journal Article
%A Lun Zhang
%A Galina Filipuk
%T On Certain Wronskians of Multiple Orthogonal Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a102/
%G en
%F SIGMA_2014_10_a102
Lun Zhang; Galina Filipuk. On Certain Wronskians of Multiple Orthogonal Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a102/

[1] Abreu L. D., Bustoz J., “Turán inequalities for symmetric {A}skey–{W}ilson polynomials”, Rocky Mountain J. Math., 30 (2000), 401–409 | DOI | MR | Zbl

[2] Aptekarev A. I., “Asymptotics of polynomials of simultaneous orthogonality in the {A}ngelescu case”, Math. USSR Sb., 64 (1989), 57–84 | DOI | MR | Zbl

[3] Aptekarev A. I., “Multiple orthogonal polynomials”, J. Comput. Appl. Math., 99 (1998), 423–447 | DOI | MR | Zbl

[4] Aptekarev A. I., “Strong asymptotics of polynomials of simultaneous orthogonality for {N}ikishin systems”, Sb. Math., 190 (1999), 631–669 | DOI | MR | Zbl

[5] Aptekarev A. I., Branquinho A., Van Assche W., “Multiple orthogonal polynomials for classical weights”, Trans. Amer. Math. Soc., 355 (2003), 3887–3914 | DOI | MR | Zbl

[6] Baricz Á., “Turán type inequalities for generalized complete elliptic integrals”, Math. Z., 256 (2007), 895–911 | DOI | MR | Zbl

[7] Baricz Á., Ismail M. E. H., “Turán type inequalities for {T}ricomi confluent hypergeometric functions”, Constr. Approx., 37 (2013), 195–221, arXiv: 1110.4699 | DOI | MR | Zbl

[8] Baricz Á., Jankov D., Pogány T. K., “Turán type inequalities for {K}rätzel functions”, J. Math. Anal. Appl., 388 (2012), 716–724, arXiv: 1101.2523 | DOI | MR | Zbl

[9] Baricz Á., Raghavendar K., Swaminathan A., “Turán type inequalities for {$q$}-hypergeometric functions”, J. Approx. Theory, 168 (2013), 69–79 | DOI | MR | Zbl

[10] Berg C., Szwarc R., “Bounds on {T}urán determinants”, J. Approx. Theory, 161 (2009), 127–141, arXiv: 0712.1460 | DOI | MR | Zbl

[11] Bleher P. M., Kuijlaars A. B. J., “Random matrices with external source and multiple orthogonal polynomials”, Int. Math. Res. Not., 2004:3 (2004), 109–129, arXiv: math-ph/0307055 | DOI | MR | Zbl

[12] Bleher P. M., Kuijlaars A. B. J., “Integral representations for multiple {H}ermite and multiple {L}aguerre polynomials”, Ann. Inst. Fourier (Grenoble), 55 (2005), 2001–2014, arXiv: math.CA/0406616 | DOI | MR | Zbl

[13] Brézin E., Hikami S., “Level spacing of random matrices in an external source”, Phys. Rev. E, 58 (1998), 7176–7185, arXiv: cond-mat/9804024 | DOI | MR

[14] Brézin E., Hikami S., “Universal singularity at the closure of a gap in a random matrix theory”, Phys. Rev. E, 57 (1998), 4140–4149, arXiv: cond-mat/9804023 | DOI | MR

[15] Brézin E., Hikami S., “Characteristic polynomials of random matrices”, Comm. Math. Phys., 214 (2000), 111–135, arXiv: math-ph/9910005 | DOI | MR

[16] Bustamante Z., Lopes Lagomasino G., “Hermite–{P}adé approximations for {N}ikishin systems of analytic functions”, Sb. Math., 77 (1994), 367–384 | DOI | MR

[17] Bustoz J., “Two-parameter {T}urán inequalities for ultraspherical and {L}aguerre polynomials”, J. Math. Anal. Appl., 79 (1981), 71–79 | DOI | MR | Zbl

[18] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978 | MR | Zbl

[19] Clarkson P. A., “The fourth {P}ainlevé equation and associated special polynomials”, J. Math. Phys., 44 (2003), 5350–5374 | DOI | MR | Zbl

[20] Csordas G., Norfolk T. S., Varga R. S., “The {R}iemann hypothesis and the {T}urán inequalities”, Trans. Amer. Math. Soc., 296 (1986), 521–541 | DOI | MR | Zbl

[21] Delvaux S., “Average characteristic polynomials for multiple orthogonal polynomial ensembles”, J. Approx. Theory, 162 (2010), 1033–1067, arXiv: 0907.0156 | DOI | MR | Zbl

[22] Durán A. J., “Wronskian type determinants of orthogonal polynomials, {S}elberg type formulas and constant term identities”, J. Combin. Theory Ser. A, 124 (2014), 57–96, arXiv: 1207.4331 | DOI | MR | Zbl

[23] Elbert Á., Laforgia A., “Some monotonicity properties of the zeros of ultraspherical polynomials”, Acta Math. Hungar., 48 (1986), 155–159 | DOI | MR

[24] Elbert Á., Laforgia A., “Monotonicity results on the zeros of generalized {L}aguerre polynomials”, J. Approx. Theory, 51 (1987), 168–174 | DOI | MR | Zbl

[25] Felder G., Hemery A. D., Veselov A. P., “Zeros of {W}ronskians of {H}ermite polynomials and {Y}oung diagrams”, Phys. D, 241 (2012), 2131–2137, arXiv: 1005.2695 | DOI | MR | Zbl

[26] Filipuk G., Van Assche W., Zhang L., “Ladder operators and differential equations for multiple orthogonal polynomials”, J. Phys. A: Math. Theor., 46 (2013), 205204, 24 pp., arXiv: 1204.5058 | DOI | MR | Zbl

[27] Forrester P. J., Rains E. M., “A {F}uchsian matrix differential equation for {S}elberg correlation integrals”, Comm. Math. Phys., 309 (2012), 771–792, arXiv: 1011.1654 | DOI | MR | Zbl

[28] Gantmacher F. R., The theory of matrices, v. 1, Chelsea Publishing Co., New York, 1959 | MR

[29] Gasper G., “An inequality of {T}urán type for {J}acobi polynomials”, Proc. Amer. Math. Soc., 32 (1972), 435–439 | DOI | MR

[30] Gasper G., “On two conjectures of {A}skey concerning normalized {H}ankel determinants for the classical polynomials”, SIAM J. Math. Anal., 4 (1973), 508–513 | DOI | MR | Zbl

[31] Gautschi W., Orthogonal polynomials: computation and approximation, Numerical Mathematics and Scientific Computation, Oxford Science Publications, Oxford University Press, New York, 2004 | MR | Zbl

[32] Gonchar A. A., Rakhmanov E. A., Sorokin V. N., “On {H}ermite–{P}adé approximants for systems of functions of {M}arkov type”, Sb. Math., 188 (1997), 671–69 | DOI | MR

[33] Haneczok M., Van Assche W., “Interlacing properties of zeros of multiple orthogonal polynomials”, J. Math. Anal. Appl., 389 (2012), 429–438, arXiv: 1108.3917 | DOI | MR | Zbl

[34] Hua L. K., Harmonic analysis of functions of several complex variables in the classical domains, Amer. Math. Soc., Providence, R.I., 1963 | MR

[35] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[36] Ismail M. E. H., “Determinants with orthogonal polynomial entries”, J. Comput. Appl. Math., 178 (2005), 255–266 | DOI | MR | Zbl

[37] Ismail M. E. H., Laforgia A., “Monotonicity properties of determinants of special functions”, Constr. Approx., 26 (2007), 1–9 | DOI | MR | Zbl

[38] Karlin S., McGregor J. L., “Determinants of orthogonal polynomials”, Bull. Amer. Math. Soc., 68 (1962), 204–209 | DOI | MR | Zbl

[39] Karlin S., Szegő G., “On certain determinants whose elements are orthogonal polynomials”, J. Analyse Math., 8 (1960), 1–157 | DOI | MR

[40] Kershaw D., “A note on orthogonal polynomials”, Proc. Edinburgh Math. Soc., 17 (1970), 83–93 | DOI | MR | Zbl

[41] Krasikov I., “Turán inequalities for three-term recurrences with monotonic coefficients”, J. Approx. Theory, 163 (2011), 1269–1299, arXiv: 1101.3204 | DOI | MR | Zbl

[42] Kuijlaars A. B. J., “Multiple orthogonal polynomial ensembles”, Recent Trends in Orthogonal Polynomials and Approximation Theory, Contemp. Math., 507, eds. J. Arvesú, F. Marcellán, A. Martínez-Finkelshtein, Amer. Math. Soc., Providence, RI, 2010, 155–176, arXiv: 0902.1058 | DOI | MR | Zbl

[43] Kuijlaars A. B. J., “Multiple orthogonal polynomials in random matrix theory”, Proceedings of the {I}nternational {C}ongress of {M}athematicians, v. III, Hindustan Book Agency, New Delhi, 2010, 1417–1432, arXiv: 1004.0846 | MR

[44] Laforgia A., “Sturm theory for certain classes of {S}turm–{L}iouville equations and {T}uránians and {W}ronskians for the zeros of derivative of {B}essel functions”, Indag. Math., 86 (1982), 295–301 | DOI | MR

[45] Leclerc B., “On certain formulas of {K}arlin and {S}zegö”, Sém. Lothar. Combin., 41 (1998), B41d, 21 pp. | MR | Zbl

[46] Lorch L., “Turánians and {W}ronskians for the zeros of {B}essel functions”, SIAM J. Math. Anal., 11 (1980), 223–227 | DOI | MR | Zbl

[47] Mehta M. L., Normand J. M., “Moments of the characteristic polynomial in the three ensembles of random matrices”, J. Phys. A: Math. Gen., 34 (2001), 4627–4639, arXiv: cond-mat/0101469 | DOI | MR | Zbl

[48] Nikishin E. M., Sorokin V. N., Rational approximations and orthogonality, Translations of Mathematical Monographs, 92, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl

[49] Nuttall J., “Wronskians, cumulants, and the {R}iemann hypothesis”, Constr. Approx., 38 (2013), 193–212 | DOI | MR | Zbl

[50] Skovgaard H., “On inequalities of the {T}urán type”, Math. Scand., 2 (1954), 65–73 | MR | Zbl

[51] Szász O., “Inequalities concerning ultraspherical polynomials and {B}essel functions”, Proc. Amer. Math. Soc., 1 (1950), 256–267 | DOI | MR

[52] Szász O., “Identities and inequalities concerning orthogonal polynomials and {B}essel functions”, J. Analyse Math., 1 (1951), 116–134 | DOI | MR | Zbl

[53] Szegő G., “On an inequality of {P}. {T}urán concerning {L}egendre polynomials”, Bull. Amer. Math. Soc., 54 (1948), 401–405 | DOI | MR | Zbl

[54] Szegő G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975

[55] Turán P., “On the zeros of the polynomials of {L}egendre”, Časopis Pěst. Mat. Fys., 75 (1950), 113–122 | MR | Zbl

[56] Van Assche W., “Multiple orthogonal polynomials, irrationality and transcendence”, Continued Fractions: from Analytic Number Theory to Constructive Approximation ({C}olumbia, {MO}, 1998), Contemp. Math., 236, Amer. Math. Soc., Providence, RI, 1999, 325–342 | DOI | MR | Zbl

[57] Van Assche W., “Padé and {H}ermite–{P}adé approximation and orthogonality”, Surv. Approx. Theory, 2 (2006), 61–91, arXiv: math.CA/0609094 | MR | Zbl

[58] Van Assche W., Coussement E., “Some classical multiple orthogonal polynomials”, J. Comput. Appl. Math., 127 (2001), 317–347, arXiv: math.CA/0103131 | DOI | MR | Zbl

[59] Vermes R., “On {W}ronskians whose elements are orthogonal polynomials”, Proc. Amer. Math. Soc., 15 (1964), 124–126 | DOI | MR | Zbl

[60] Zinn-Justin P., “Universality of correlation functions of {H}ermitian random matrices in an external field”, Comm. Math. Phys., 194 (1998), 631–650, arXiv: cond-mat/9705044 | DOI | MR | Zbl