Particle Motion in Monopoles and Geodesics on Cones
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equations of motion of a charged particle in the field of Yang's $\mathrm{SU}(2)$ monopole in 5-dimensional Euclidean space are derived by applying the Kaluza–Klein formalism to the principal bundle $\mathbb{R}^8\setminus\{0\}\to\mathbb{R}^5\setminus\{0\}$ obtained by radially extending the Hopf fibration $S^7\to S^4$, and solved by elementary methods. The main result is that for every particle trajectory $\mathbf{r}:I\to\mathbb{R}^5\setminus\{0\}$, there is a 4-dimensional cone with vertex at the origin on which $\mathbf{r}$ is a geodesic. We give an explicit expression of the cone for any initial conditions.
Keywords: particle motion; monopoles; geodesics; cones.
@article{SIGMA_2014_10_a101,
     author = {Maxence Mayrand},
     title = {Particle {Motion} in {Monopoles} and {Geodesics} on {Cones}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a101/}
}
TY  - JOUR
AU  - Maxence Mayrand
TI  - Particle Motion in Monopoles and Geodesics on Cones
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a101/
LA  - en
ID  - SIGMA_2014_10_a101
ER  - 
%0 Journal Article
%A Maxence Mayrand
%T Particle Motion in Monopoles and Geodesics on Cones
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a101/
%G en
%F SIGMA_2014_10_a101
Maxence Mayrand. Particle Motion in Monopoles and Geodesics on Cones. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a101/

[1] Bai Z., Meng G., Wang E., “On the orbits of magnetized {K}epler problems in dimension {$2k+1$}”, J. Geom. Phys., 73 (2013), 260–269, arXiv: 1302.7271 | DOI | MR | Zbl

[2] Cho Y. M., “Higher-dimensional unifications of gravitation and gauge theories”, J. Math. Phys., 16 (1975), 2029–2035 | DOI | MR

[3] Dirac P. A. M., “Quantised singularities in the electromagnetic field”, Proc. R. Soc. Lond. Ser. A, 133 (1931), 60–72 | DOI

[4] Duval C., Horváthy P., “Particles with internal structure: the geometry of classical motions and conservation laws”, Ann. Physics, 142 (1982), 10–33 | DOI | MR

[5] Fehér L. G., “The {${\rm O}(3,1)$} symmetry problem of the charge-monopole interaction”, J. Math. Phys., 28 (1987), 234–239 | DOI | MR | Zbl

[6] Fierz M., “Zur {T}heorie magnetisch geladener {T}eilchen”, Helvetica Phys. Acta, 17 (1944), 27–34 | MR | Zbl

[7] Goddard P., Olive D. I., “Magnetic monopoles in gauge field-theories”, Rep. Progr. Phys., 41 (1978), 1357–1437 | DOI

[8] Haas F., Noether symmetries for charged particle motion under a magnetic monopole and general electric fields, arXiv: physics/0211074 | MR

[9] Harnad J., Paré J. P., “Kaluza–{K}lein approach to the motion of nonabelian charged particles with spin”, Classical Quantum Gravity, 8 (1991), 1427–1444 | DOI | MR

[10] Horváthy P. A., “The dynamical symmetries of the monopole in geometric quantization”, Lett. Math. Phys., 7 (1983), 353–361 | DOI | MR

[11] Iwai T., “The geometry of the {${\rm SU}(2)$} {K}epler problem”, J. Geom. Phys., 7 (1990), 507–535 | DOI | MR | Zbl

[12] Jackiw R., “Dynamical symmetry of the magnetic monopole”, Ann. Physics, 129 (1980), 183–200 | DOI | MR

[13] Kerner R., “Generalization of the {K}aluza–{K}lein theory for an arbitrary non-abelian gauge group”, Ann. Inst. H. Poincaré Sect. A, 9 (1968), 143–152 | MR

[14] Lapidus I. R., Pietenpol J. L., “Classical interaction of an electric charge with a magnetic monopole”, Amer. J. Phys., 28 (1960), 17–18 | DOI | MR | Zbl

[15] McIntosh H. V., Cisneros A., “Degeneracy in the presence of a magnetic monopole”, J. Math. Phys., 11 (1970), 896–916 | DOI | MR

[16] Meng G., “Dirac and Yang monopoles revisited”, Cent. Eur. J. Phys., 5 (2007), 570–575, arXiv: math-ph/0409051 | DOI

[17] Meng G., “M{ICZ}-{K}epler problems in all dimensions”, J. Math. Phys., 48 (2007), 032105, 14 pp., arXiv: math-ph/0507028 | DOI | MR | Zbl

[18] Meng G., “The {P}oisson realization of {$\mathfrak{so}(2,2k+2)$} on magnetic leaves and generalized {MICZ}-{K}epler problems”, J. Math. Phys., 54 (2013), 052902, 14 pp., arXiv: 1211.5992 | DOI | MR | Zbl

[19] Minami M., “Dirac's monopole and the {H}opf map”, Progr. Theoret. Phys., 62 (1979), 1128–1142 | DOI | MR | Zbl

[20] Minami M., “Quaternionic gauge-fields on $S^7$ and Yang's ${\rm SU}(2)$ monopole”, Progr. Theoret. Phys., 63 (1980), 303–321 | DOI

[21] Montgomery R., “Canonical formulations of a classical particle in a {Y}ang–{M}ills field and {W}ong's equations”, Lett. Math. Phys., 8 (1984), 59–67 | DOI | MR | Zbl

[22] Montgomery R., “M{ICZ}-{K}epler: dynamics on the cone over {${\rm SO}(n)$}”, Regul. Chaotic Dyn., 18 (2013), 600–607, arXiv: 1305.1063 | DOI | MR | Zbl

[23] Moreira I. C., Ritter O. M., Santos F. C., “Lie symmetries for the charge-monopole problem”, J. Phys. A: Math. Gen., 18 (1985), L427–L430 | DOI | MR

[24] Orzalesi C. A., Pauri M., “Geodesic motion in multidimensional unified gauge theories”, Nuovo Cimento B, 68 (1982), 193–202 | DOI | MR

[25] Poincaré H.“, Remarques sur une expérience de M. Birkeland”, Compt. Rend. Acad. Sci. Paris, 123 (1896), 530–533 | DOI

[26] Ritter O. M., “Symmetries and invariants for some cases involving charged particles and general electromagnetic fields: a brief review”, Braz. J. Phys., 30 (2000), 438–454 | DOI

[27] Ryder L. H., “Dirac monopoles and the {H}opf map {$S^{3}\rightarrow S^{2}$}”, J. Phys. A: Math. Gen., 13 (1980), 437–447 | DOI | MR | Zbl

[28] Sivardière J., “On the classical motion of a charge in the field of a magnetic monopole”, Eur. J. Phys., 21 (2000), 183–190 | DOI | Zbl

[29] Spivak M., A comprehensive introduction to differential geometry, v. 4, Publish or Perish, Boston, Mass., 1975

[30] Sternberg S., “Minimal coupling and the symplectic mechanics of a classical particle in the presence of a {Y}ang–{M}ills field”, Proc. Nat. Acad. Sci. USA, 74 (1977), 5253–5254 | DOI | MR | Zbl

[31] Trautman A., “Solutions of Maxwell and Yang–Mills equations associated with Hopf fibrings”, Internat. J. Theoret. Phys., 16 (1977), 561–565 | DOI

[32] Weinstein A., “A universal phase space for particles in {Y}ang–{M}ills fields”, Lett. Math. Phys., 2 (1978), 417–420 | DOI | MR | Zbl

[33] Wong S. K., “Field and particle equations for the classical Yang–Mills field and particles with isotopic spin”, Nuovo Cimento A, 65 (1970), 689–694 | DOI

[34] Yang C. N., “Generalization of Dirac's monopole to ${\rm SU}_2$ gauge fields”, J. Math. Phys., 19 (1978), 320–328 | DOI

[35] Zwanziger D., “Exactly soluble nonrelativistic model of particles with both electric and magnetic charges”, Phys. Rev., 176 (1968), 1480–1488 | DOI