Who's Afraid of the Hill Boundary?
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Jacobi–Maupertuis metric allows one to reformulate Newton's equations as geodesic equations for a Riemannian metric which degenerates at the Hill boundary. We prove that a JM geodesic which comes sufficiently close to a regular point of the boundary contains pairs of conjugate points close to the boundary. We prove the conjugate locus of any point near enough to the boundary is a hypersurface tangent to the boundary. Our method of proof is to reduce analysis of geodesics near the boundary to that of solutions to Newton's equations in the simplest model case: a constant force. This model case is equivalent to the beginning physics problem of throwing balls upward from a fixed point at fixed speeds and describing the resulting arcs, see Fig. 2.
Mots-clés : Jacobi–Maupertuis metric; conjugate points.
@article{SIGMA_2014_10_a100,
     author = {Richard Montgomery},
     title = {Who's {Afraid} of the {Hill} {Boundary?}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a100/}
}
TY  - JOUR
AU  - Richard Montgomery
TI  - Who's Afraid of the Hill Boundary?
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a100/
LA  - en
ID  - SIGMA_2014_10_a100
ER  - 
%0 Journal Article
%A Richard Montgomery
%T Who's Afraid of the Hill Boundary?
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a100/
%G en
%F SIGMA_2014_10_a100
Richard Montgomery. Who's Afraid of the Hill Boundary?. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a100/

[1] Abraham R., Marsden J. E., Foundations of mechanics, second edition ed., Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1978 | MR | Zbl

[2] Cuervo-Reyes E., Movassagh R., On geometrical aspects of dynamical stability, arXiv: 0811.0126

[3] Golubitsky M., Guillemin V., Stable mappings and their singularities, Graduate Texts in Mathematics, 14, Springer-Verlag, New York–Heidelberg, 1973 | DOI | MR | Zbl

[4] Levi M., Classical mechanics with calculus of variations and optimal control. An intuitive introduction, Student Mathematical Library, 69, Amer. Math. Soc., Providence, RI, 2014 | MR | Zbl

[5] Moeckel R., “A variational proof of existence of transit orbits in the restricted three-body problem”, Dyn. Syst., 20 (2005), 45–58 | DOI | MR | Zbl

[6] Seifert H., “Periodische {B}ewegungen mechanischer {S}ysteme”, Math. Z., 51 (1948), 197–216 | DOI | MR | Zbl

[7] Soave N., Terracini S., “Symbolic dynamics for the {$N$}-centre problem at negative energies”, Discrete Contin. Dyn. Syst., 32 (2012), 3245–3301, arXiv: 1201.0280 | DOI | MR | Zbl

[8] Warner F. W., “The conjugate locus of a {R}iemannian manifold”, Amer. J. Math., 87 (1965), 575–604 | DOI | MR | Zbl