@article{SIGMA_2014_10_a10,
author = {Carles Batlle and Joaquim Gomis and Kiyoshi Kamimura},
title = {Symmetries of the {Free} {Schr\"odinger} {Equation} in the {Non-Commutative} {Plane}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a10/}
}
TY - JOUR AU - Carles Batlle AU - Joaquim Gomis AU - Kiyoshi Kamimura TI - Symmetries of the Free Schrödinger Equation in the Non-Commutative Plane JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a10/ LA - en ID - SIGMA_2014_10_a10 ER -
%0 Journal Article %A Carles Batlle %A Joaquim Gomis %A Kiyoshi Kamimura %T Symmetries of the Free Schrödinger Equation in the Non-Commutative Plane %J Symmetry, integrability and geometry: methods and applications %D 2014 %V 10 %U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a10/ %G en %F SIGMA_2014_10_a10
Carles Batlle; Joaquim Gomis; Kiyoshi Kamimura. Symmetries of the Free Schrödinger Equation in the Non-Commutative Plane. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a10/
[1] Alvarez P. D., Gomis J., Kamimura K., Plyushchay M. S., “$(2+1)${D} exotic {N}ewton–{H}ooke symmetry, duality and projective phase”, Ann. Physics, 322 (2007), 1556–1586, arXiv: hep-th/0702014 | DOI | MR | Zbl
[2] Ballesteros A., Gadella M., del Olmo M. A., “Moyal quantization of {$(2+1)$}-dimensional {G}alilean systems”, J. Math. Phys., 33 (1992), 3379–3386 | DOI | MR | Zbl
[3] Banerjee R., “Deformed {S}chrödinger symmetry on noncommutative space”, Eur. Phys. J. C Part. Fields, 47 (2006), 541–545, arXiv: hep-th/0508224 | DOI | MR | Zbl
[4] Bekaert X., Meunier E., Moroz S., “Symmetries and currents of the ideal and unitary Fermi gases”, J. High Energy Phys., 2012:2 (2012), 113, 59 pp., arXiv: 1111.3656 | DOI | MR
[5] Brihaye Y., Gonera C., Giller S., Kosiński P., Galilean invariance in $2+1$ dimensions, arXiv: hep-th/9503046
[6] Callan C. G., Coleman S. R., Wess J., Zumino B., “Structure of phenomenological Lagrangians, II”, Phys. Rev., 177 (1969), 2247–2250 | DOI
[7] Coleman S. R., Wess J., Zumino B., “Structure of phenomenological Lagrangians, I”, Phys. Rev., 177 (1969), 2239–2247 | DOI
[8] del Olmo M. A., Plyushchay M. S., “Electric {C}hern–{S}imons term, enlarged exotic {G}alilei symmetry and noncommutative plane”, Ann. Physics, 321 (2006), 2830–2848, arXiv: hep-th/0508020 | DOI | MR | Zbl
[9] Duval C., Horváthy P. A., “Exotic {G}alilean symmetry in the non-commutative plane and the {H}all effect”, J. Phys. A: Math. Gen., 34 (2001), 10097–10107, arXiv: hep-th/0106089 | DOI | MR | Zbl
[10] Eastwood M., “Higher symmetries of the {L}aplacian”, Ann. of Math., 161 (2005), 1645–1665, arXiv: hep-th/0206233 | DOI | MR | Zbl
[11] Gomis J., Kamimura K., “Schrödinger equations for higher order non-relativistic particles and $N$-Galilean conformal symmetry”, Phys. Rev. D, 85 (2012), 045023, 6 pp., arXiv: 1109.3773 | DOI
[12] Hagen C. R., “Scale and conformal transformations in Galilean-covariant field theory”, Phys. Rev. D, 5 (1972), 377–388 | DOI
[13] Hagen C. R., “Galilean-invariant gauge theory”, Phys. Rev. D, 31 (1985), 848–855 | DOI | MR
[14] Horváthy P. A., Martina L., Stichel P. C., “Galilean symmetry in noncommutative field theory”, Phys. Lett. B, 564 (2003), 149–154, arXiv: hep-th/0304215 | DOI | MR | Zbl
[15] Horváthy P. A., Martina L., Stichel P. C., “Exotic {G}alilean symmetry and non-commutative mechanics”, SIGMA, 6 (2010), 060, 26 pp., arXiv: 1002.4772 | DOI | MR | Zbl
[16] Horváthy P. A., Plyushchay M. S., “Anyon wave equations and the noncommutative plane”, Phys. Lett. B, 595 (2004), 547–555, arXiv: hep-th/0404137 | DOI | MR | Zbl
[17] Horváthy P. A., Plyushchay M. S., “Nonrelativistic anyons in external electromagnetic field”, Nuclear Phys. B, 714 (2005), 269–291, arXiv: hep-th/0502040 | DOI | MR | Zbl
[18] Ivanov E. A., Ogieveckii V. I., “Inverse Higgs effect in nonlinear realizations”, Theoret. and Math. Phys., 25 (1975), 1050–1059 | DOI | MR
[19] Jackiw R., “Introducing scale symmetry”, Phys. Today, 25:1 (1972), 23–27 | DOI
[20] Kastrup H. A., “Gauge properties of the {G}alilei space”, Nuclear Phys. B, B7 (1968), 545–558 | DOI | MR | Zbl
[21] Lévy-Leblond J. M., “Galilei group and {G}alilean invariance”, Group Theory and its Applications, v. II, Academic Press, New York, 1971, 221–299
[22] Lukierski J., Stichel P. C., Zakrzewski W. J., “Galilean-invariant {$(2+1)$}-dimensional models with a {C}hern–{S}imons-like term and {$D=2$} noncommutative geometry”, Ann. Physics, 260 (1997), 224–249, arXiv: hep-th/9612017 | DOI | MR | Zbl
[23] Niederer U., “The maximal kinematical invariance group of the free {S}chrödinger equation”, Helv. Phys. Acta, 45 (1972), 802–810 | MR
[24] Valenzuela M., Higher-spin symmetries of the free Schrödinger equation, arXiv: 0912.0789
[25] Vasiliev M. A., “Higher spin gauge theories in any dimension”, C. R. Phys., 5 (2004), 1101–1109, arXiv: hep-th/0409260 | DOI | MR