Symmetries of the Free Schrödinger Equation in the Non-Commutative Plane
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study all the symmetries of the free Schrödinger equation in the non-commutative plane. These symmetry transformations form an infinite-dimensional Weyl algebra that appears naturally from a two-dimensional Heisenberg algebra generated by Galilean boosts and momenta. These infinite high symmetries could be useful for constructing non-relativistic interacting higher spin theories. A finite-dimensional subalgebra is given by the Schrödinger algebra which, besides the Galilei generators, contains also the dilatation and the expansion. We consider the quantization of the symmetry generators in both the reduced and extended phase spaces, and discuss the relation between both approaches.
Keywords: non-commutative plane; Schrödinger equation; Schrödinger symmetries; higher spin symmetries.
@article{SIGMA_2014_10_a10,
     author = {Carles Batlle and Joaquim Gomis and Kiyoshi Kamimura},
     title = {Symmetries of the {Free} {Schr\"odinger} {Equation} in the {Non-Commutative} {Plane}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a10/}
}
TY  - JOUR
AU  - Carles Batlle
AU  - Joaquim Gomis
AU  - Kiyoshi Kamimura
TI  - Symmetries of the Free Schrödinger Equation in the Non-Commutative Plane
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a10/
LA  - en
ID  - SIGMA_2014_10_a10
ER  - 
%0 Journal Article
%A Carles Batlle
%A Joaquim Gomis
%A Kiyoshi Kamimura
%T Symmetries of the Free Schrödinger Equation in the Non-Commutative Plane
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a10/
%G en
%F SIGMA_2014_10_a10
Carles Batlle; Joaquim Gomis; Kiyoshi Kamimura. Symmetries of the Free Schrödinger Equation in the Non-Commutative Plane. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a10/

[1] Alvarez P. D., Gomis J., Kamimura K., Plyushchay M. S., “$(2+1)${D} exotic {N}ewton–{H}ooke symmetry, duality and projective phase”, Ann. Physics, 322 (2007), 1556–1586, arXiv: hep-th/0702014 | DOI | MR | Zbl

[2] Ballesteros A., Gadella M., del Olmo M. A., “Moyal quantization of {$(2+1)$}-dimensional {G}alilean systems”, J. Math. Phys., 33 (1992), 3379–3386 | DOI | MR | Zbl

[3] Banerjee R., “Deformed {S}chrödinger symmetry on noncommutative space”, Eur. Phys. J. C Part. Fields, 47 (2006), 541–545, arXiv: hep-th/0508224 | DOI | MR | Zbl

[4] Bekaert X., Meunier E., Moroz S., “Symmetries and currents of the ideal and unitary Fermi gases”, J. High Energy Phys., 2012:2 (2012), 113, 59 pp., arXiv: 1111.3656 | DOI | MR

[5] Brihaye Y., Gonera C., Giller S., Kosiński P., Galilean invariance in $2+1$ dimensions, arXiv: hep-th/9503046

[6] Callan C. G., Coleman S. R., Wess J., Zumino B., “Structure of phenomenological Lagrangians, II”, Phys. Rev., 177 (1969), 2247–2250 | DOI

[7] Coleman S. R., Wess J., Zumino B., “Structure of phenomenological Lagrangians, I”, Phys. Rev., 177 (1969), 2239–2247 | DOI

[8] del Olmo M. A., Plyushchay M. S., “Electric {C}hern–{S}imons term, enlarged exotic {G}alilei symmetry and noncommutative plane”, Ann. Physics, 321 (2006), 2830–2848, arXiv: hep-th/0508020 | DOI | MR | Zbl

[9] Duval C., Horváthy P. A., “Exotic {G}alilean symmetry in the non-commutative plane and the {H}all effect”, J. Phys. A: Math. Gen., 34 (2001), 10097–10107, arXiv: hep-th/0106089 | DOI | MR | Zbl

[10] Eastwood M., “Higher symmetries of the {L}aplacian”, Ann. of Math., 161 (2005), 1645–1665, arXiv: hep-th/0206233 | DOI | MR | Zbl

[11] Gomis J., Kamimura K., “Schrödinger equations for higher order non-relativistic particles and $N$-Galilean conformal symmetry”, Phys. Rev. D, 85 (2012), 045023, 6 pp., arXiv: 1109.3773 | DOI

[12] Hagen C. R., “Scale and conformal transformations in Galilean-covariant field theory”, Phys. Rev. D, 5 (1972), 377–388 | DOI

[13] Hagen C. R., “Galilean-invariant gauge theory”, Phys. Rev. D, 31 (1985), 848–855 | DOI | MR

[14] Horváthy P. A., Martina L., Stichel P. C., “Galilean symmetry in noncommutative field theory”, Phys. Lett. B, 564 (2003), 149–154, arXiv: hep-th/0304215 | DOI | MR | Zbl

[15] Horváthy P. A., Martina L., Stichel P. C., “Exotic {G}alilean symmetry and non-commutative mechanics”, SIGMA, 6 (2010), 060, 26 pp., arXiv: 1002.4772 | DOI | MR | Zbl

[16] Horváthy P. A., Plyushchay M. S., “Anyon wave equations and the noncommutative plane”, Phys. Lett. B, 595 (2004), 547–555, arXiv: hep-th/0404137 | DOI | MR | Zbl

[17] Horváthy P. A., Plyushchay M. S., “Nonrelativistic anyons in external electromagnetic field”, Nuclear Phys. B, 714 (2005), 269–291, arXiv: hep-th/0502040 | DOI | MR | Zbl

[18] Ivanov E. A., Ogieveckii V. I., “Inverse Higgs effect in nonlinear realizations”, Theoret. and Math. Phys., 25 (1975), 1050–1059 | DOI | MR

[19] Jackiw R., “Introducing scale symmetry”, Phys. Today, 25:1 (1972), 23–27 | DOI

[20] Kastrup H. A., “Gauge properties of the {G}alilei space”, Nuclear Phys. B, B7 (1968), 545–558 | DOI | MR | Zbl

[21] Lévy-Leblond J. M., “Galilei group and {G}alilean invariance”, Group Theory and its Applications, v. II, Academic Press, New York, 1971, 221–299

[22] Lukierski J., Stichel P. C., Zakrzewski W. J., “Galilean-invariant {$(2+1)$}-dimensional models with a {C}hern–{S}imons-like term and {$D=2$} noncommutative geometry”, Ann. Physics, 260 (1997), 224–249, arXiv: hep-th/9612017 | DOI | MR | Zbl

[23] Niederer U., “The maximal kinematical invariance group of the free {S}chrödinger equation”, Helv. Phys. Acta, 45 (1972), 802–810 | MR

[24] Valenzuela M., Higher-spin symmetries of the free Schrödinger equation, arXiv: 0912.0789

[25] Vasiliev M. A., “Higher spin gauge theories in any dimension”, C. R. Phys., 5 (2004), 1101–1109, arXiv: hep-th/0409260 | DOI | MR