Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We identify a periodic reduction of the non-autonomous lattice potential Korteweg-de Vries equation with the additive discrete Painlevé equation with $E_6^{(1)}$ symmetry. We present a description of a set of symmetries of the reduced equations and their relations to the symmetries of the discrete Painlevé equation. Finally, we exploit the simple symmetric form of the reduced equations to find rational and hypergeometric solutions of this discrete Painlevé equation.
Keywords: difference equations; integrability; reduction; isomonodromy.
@article{SIGMA_2014_10_a1,
     author = {Christopher M. Ormerod},
     title = {Symmetries and {Special} {Solutions} of {Reductions} of the {Lattice} {Potential} {KdV} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a1/}
}
TY  - JOUR
AU  - Christopher M. Ormerod
TI  - Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a1/
LA  - en
ID  - SIGMA_2014_10_a1
ER  - 
%0 Journal Article
%A Christopher M. Ormerod
%T Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a1/
%G en
%F SIGMA_2014_10_a1
Christopher M. Ormerod. Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a1/

[1] Ablowitz M. J., Segur H., “Exact linearization of a {P}ainlevé transcendent”, Phys. Rev. Lett., 38 (1977), 1103–1106 | DOI | MR

[2] Arinkin D., Borodin A., “Moduli spaces of {$d$}-connections and difference {P}ainlevé equations”, Duke Math. J., 134 (2006), 515–556, arXiv: math.AG/0411584 | DOI | MR | Zbl

[3] Birkhoff G. D., “General theory of linear difference equations”, Trans. Amer. Math. Soc., 12 (1911), 243–284 | DOI | MR | Zbl

[4] Boll R., “Classification of 3{D} consistent quad-equations”, J. Nonlinear Math. Phys., 18 (2011), 337–365, arXiv: 1009.4007 | DOI | MR | Zbl

[5] Borodin A., “Isomonodromy transformations of linear systems of difference equations”, Ann. of Math., 160 (2004), 1141–1182, arXiv: math.CA/0209144 | DOI | MR

[6] Clarkson P. A., “Painlevé equations — nonlinear special functions”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1883, Springer, Berlin, 2006, 331–411 | DOI | MR | Zbl

[7] Clarkson P. A., Kruskal M. D., “New similarity reductions of the {B}oussinesq equation”, J. Math. Phys., 30 (1989), 2201–2213 | DOI | MR | Zbl

[8] Doliwa A., “Non-commutative lattice-modified {G}el'fand–{D}ikii systems”, J. Phys. A: Math. Theor., 46 (2013), 205202, 14 pp., arXiv: 1302.5594 | DOI | MR | Zbl

[9] Dzhamay A., Sakai H., Takenawa T., Discrete {H}amiltonian structure of {S}chlesinger transformations, arXiv: 1302.2972

[10] Flaschka H., Newell A. C., “Monodromy- and spectrum-preserving deformations, I”, Comm. Math. Phys., 76 (1980), 65–116 | DOI | MR | Zbl

[11] Hay M., “Hierarchies of nonlinear integrable {$q$}-difference equations from series of {L}ax pairs”, J. Phys. A: Math. Theor., 40 (2007), 10457–10471 | DOI | MR | Zbl

[12] Hay M., Hietarinta J., Joshi N., Nijhoff F. W., “A {L}ax pair for a lattice modified {K}d{V} equation, reductions to {$q$}-{P}ainlevé equations and associated {L}ax pairs”, J. Phys. A: Math. Theor., 40 (2007), F61–F73 | DOI | MR | Zbl

[13] Hay M., Howes P., Shi Y., A systematic approach to reductions of type-{Q} {ABS} equations, arXiv: 1307.3390

[14] Hay M., Kajiwara K., Masuda T., “Bilinearization and special solutions to the discrete {S}chwarzian {K}d{V} equation”, J. Math-for-Ind., 3A (2011), 53–62, arXiv: 1102.1829 | MR | Zbl

[15] Hone A. N. W., van der Kamp P. H., Quispel G. R. W., Tran D. T., “Integrability of reductions of the discrete {K}orteweg–de {V}ries and potential {K}orteweg–de {V}ries equations”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 469 (2013), 20120747, 23 pp., arXiv: 1211.6958 | DOI

[16] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl

[17] Jimbo M., Sakai H., “A {$q$}-analog of the sixth {P}ainlevé equation”, Lett. Math. Phys., 38 (1996), 145–154, arXiv: chao-dyn/9507010 | DOI | MR | Zbl

[18] Kajiwara K., The hypergeometric solutions of the additive {P}ainlevé equations with ${E}$-type affine {W}eyl symmetry, {R}eports of RIAM Symposium No 19ME-S2 (in Japanese)

[19] Kajiwara K., Kimura K., “On a {$q$}-difference {P}ainlevé {III} equation. I: {D}erivation, symmetry and {R}iccati type solutions”, J. Nonlinear Math. Phys., 10 (2003), 86–102, arXiv: nlin.SI/0205019 | DOI | MR | Zbl

[20] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “{${}_{10}E_9$} solution to the elliptic {P}ainlevé equation”, J. Phys. A: Math. Gen., 36 (2003), L263–L272, arXiv: nlin.SI/0303032 | DOI | MR | Zbl

[21] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “Construction of hypergeometric solutions to the {$q$}-{P}ainlevé equations”, Int. Math. Res. Not., 2005 (2005), 1441–1463, arXiv: nlin.SI/0501051 | DOI | MR

[22] Kajiwara K., Noumi M., Yamada Y., “A study on the fourth {$q$}-{P}ainlevé equation”, J. Phys. A: Math. Gen., 34 (2001), 8563–8581, arXiv: nlin.SI/0012063 | DOI | MR | Zbl

[23] Kruskal M. D., Tamizhmani K. M., Grammaticos B., Ramani A., “Asymmetric discrete {P}ainlevé equations”, Regul. Chaotic Dyn., 5 (2000), 273–280 | DOI | MR | Zbl

[24] Murata M., “New expressions for discrete {P}ainlevé equations”, Funkcial. Ekvac., 47 (2004), 291–305, arXiv: nlin.SI/0304001 | DOI | MR | Zbl

[25] Murata M., “Lax forms of the {$q$}-{P}ainlevé equations”, J. Phys. A: Math. Theor., 42 (2009), 115201, 17 pp., arXiv: 0810.0058 | DOI | MR | Zbl

[26] Murata M., Sakai H., Yoneda J., “Riccati solutions of discrete {P}ainlevé equations with {W}eyl group symmetry of type {$E^{(1)}_8$}”, J. Math. Phys., 44 (2003), 1396–1414, arXiv: nlin.SI/0210040 | DOI | MR | Zbl

[27] Nijhoff F., Capel H., “The discrete {K}orteweg–de {V}ries equation”, Acta Appl. Math., 39 (1995), 133–158 | DOI | MR | Zbl

[28] Nijhoff F., Hone A., Joshi N., “On a {S}chwarzian {PDE} associated with the {K}d{V} hierarchy”, Phys. Lett. A, 267 (2000), 147–156, arXiv: solv-int/9909026 | DOI | MR | Zbl

[29] Nijhoff F., Joshi N., Hone A., “On the discrete and continuous {M}iura chain associated with the sixth {P}ainlevé equation”, Phys. Lett. A, 264 (2000), 396–406, arXiv: solv-int/9906006 | DOI | MR | Zbl

[30] Nijhoff F.W., Papageorgiou V. G., “Similarity reductions of integrable lattices and discrete analogues of the {P}ainlevé II equation”, Phys. Lett. A, 153 (1991), 337–344 | DOI | MR

[31] Nijhoff F. W., Quispel G. R. W., Capel H. W., “Direct linearization of nonlinear difference-difference equations”, Phys. Lett. A, 97 (1983), 125–128 | DOI | MR

[32] Nijhoff F. W., Ramani A., Grammaticos B., Ohta Y., “On discrete {P}ainlevé equations associated with the lattice {K}d{V} systems and the {P}ainlevé {VI} equation”, Stud. Appl. Math., 106 (2001), 261–314, arXiv: solv-int/9812011 | DOI | MR | Zbl

[33] Nijhoff F. W., Walker A. J., “The discrete and continuous {P}ainlevé {VI} hierarchy and the {G}arnier systems”, Glasg. Math. J., 43A (2001), 109–123, arXiv: nlin.SI/0001054 | DOI | MR | Zbl

[34] Noumi M., “Special functions arising from discrete {P}ainlevé equations: a survey”, J. Comput. Appl. Math., 202 (2007), 48–55 | DOI | MR | Zbl

[35] Ormerod C. M., “The lattice structure of connection preserving deformations for {$q$}-{P}ainlevé equations {I}”, SIGMA, 7 (2011), 045, 22 pp., arXiv: 1010.3036 | DOI | MR | Zbl

[36] Ormerod C. M., “A study of the associated linear problem for $q$-${\rm P}_{\rm V}$”, J. Phys. A: Math. Theor., 44 (2011), 025201, 26 pp., arXiv: 0911.5552 | DOI | Zbl

[37] Ormerod C. M., “Reductions of lattice m{K}d{V} to {$q$}-{${\rm P}_{\rm VI}$}”, Phys. Lett. A, 376 (2012), 2855–2859, arXiv: 1112.2419 | DOI | MR | Zbl

[38] Ormerod C. M., van der Kamp P. H., Hietarinta J., Quispel G. R. W., Twisted reductions of integrable lattice equations, and their {L}ax representations, arXiv: 1307.5208

[39] Ormerod C. M., van der Kamp P. H., Quispel G. R. W., “Discrete {P}ainlevé equations and their {L}ax pairs as reductions of integrable lattice equations”, J. Phys. A: Math. Theor., 46 (2013), 095204, 22 pp., arXiv: 1209.4721 | DOI | MR | Zbl

[40] Ormerod C. M., Witte N. S., Forrester P. J., “Connection preserving deformations and {$q$}-semi-classical orthogonal polynomials”, Nonlinearity, 24 (2011), 2405–2434, arXiv: 0906.0640 | DOI | MR | Zbl

[41] Papageorgiou V. G., Nijhoff F. W., Capel H. W., “Integrable mappings and nonlinear integrable lattice equations”, Phys. Lett. A, 147 (1990), 106–114 | DOI | MR

[42] Papageorgiou V. G., Nijhoff F. W., Grammaticos B., Ramani A., “Isomonodromic deformation problems for discrete analogues of {P}ainlevé equations”, Phys. Lett. A, 164 (1992), 57–64 | DOI | MR

[43] Praagman C., “Fundamental solutions for meromorphic linear difference equations in the complex plane, and related problems”, J. Reine Angew. Math., 369 (1986), 101–109 | DOI | MR | Zbl

[44] Rains E. M., “An isomonodromy interpretation of the hypergeometric solution of the elliptic {P}ainlevé equation (and generalizations)”, SIGMA, 7 (2011), 088, 24 pp., arXiv: 0807.0258 | DOI | MR | Zbl

[45] Ramani A., Carstea A. S., Grammaticos B., “On the non-autonomous form of the {$Q_4$} mapping and its relation to elliptic {P}ainlevé equations”, J. Phys. A: Math. Theor., 42 (2009), 322003, 8 pp. | DOI | MR | Zbl

[46] Ramani A., Grammaticos B., Tamizhmani T., Tamizhmani K. M., “Special function solutions of the discrete {P}ainlevé equations”, Comput. Math. Appl., 42 (2001), 603–614 | DOI | MR | Zbl

[47] Sakai H., “Rational surfaces associated with affine root systems and geometry of the {P}ainlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl

[48] Sakai H., “Hypergeometric solution of {$q$}-{S}chlesinger system of rank two”, Lett. Math. Phys., 73 (2005), 237–247 | DOI | MR | Zbl

[49] Sakai H., “Lax form of the {$q$}-{P}ainlevé equation associated with the {$A^{(1)}_2$} surface”, J. Phys. A: Math. Gen., 39 (2006), 12203–12210 | DOI | MR | Zbl

[50] Tran D. T., van der Kamp P. H., Quispel G. R. W., “Involutivity of integrals of sine-{G}ordon, modified {K}d{V} and potential {K}d{V} maps”, J. Phys. A: Math. Theor., 44 (2011), 295206, 13 pp., arXiv: 1010.3471 | DOI | MR | Zbl

[51] van der Kamp P. H., Quispel G. R. W., “The staircase method: integrals for periodic reductions of integrable lattice equations”, J. Phys. A: Math. Theor., 43 (2010), 465207, 34 pp., arXiv: 1005.2071 | DOI | MR | Zbl

[52] Witte N. S., The correspondence between the {A}skey table of orthogonal polynomial systems and the {S}akai scheme of discrete {P}ainlevé equations, in preparation

[53] Witte N. S., Ormerod C. M., “Construction of a {L}ax pair for the {$E_6^{(1)}$} {$q$}-{P}ainlevé system”, SIGMA, 8 (2012), 097, 27 pp., arXiv: 1207.0041 | DOI | MR | Zbl

[54] Yamada Y., “Padé method to {P}ainlevé equations”, Funkcial. Ekvac., 52 (2009), 83–92 | DOI | MR | Zbl

[55] Yamada Y., “Lax formalism for {$q$}-{P}ainlevé equations with affine {W}eyl group symmetry of type {$E^{(1)}_n$}”, Int. Math. Res. Not., 2011 (2011), 3823–3838, arXiv: 1004.1687 | DOI | MR | Zbl