@article{SIGMA_2014_10_a1,
author = {Christopher M. Ormerod},
title = {Symmetries and {Special} {Solutions} of {Reductions} of the {Lattice} {Potential} {KdV} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a1/}
}
TY - JOUR AU - Christopher M. Ormerod TI - Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a1/ LA - en ID - SIGMA_2014_10_a1 ER -
Christopher M. Ormerod. Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a1/
[1] Ablowitz M. J., Segur H., “Exact linearization of a {P}ainlevé transcendent”, Phys. Rev. Lett., 38 (1977), 1103–1106 | DOI | MR
[2] Arinkin D., Borodin A., “Moduli spaces of {$d$}-connections and difference {P}ainlevé equations”, Duke Math. J., 134 (2006), 515–556, arXiv: math.AG/0411584 | DOI | MR | Zbl
[3] Birkhoff G. D., “General theory of linear difference equations”, Trans. Amer. Math. Soc., 12 (1911), 243–284 | DOI | MR | Zbl
[4] Boll R., “Classification of 3{D} consistent quad-equations”, J. Nonlinear Math. Phys., 18 (2011), 337–365, arXiv: 1009.4007 | DOI | MR | Zbl
[5] Borodin A., “Isomonodromy transformations of linear systems of difference equations”, Ann. of Math., 160 (2004), 1141–1182, arXiv: math.CA/0209144 | DOI | MR
[6] Clarkson P. A., “Painlevé equations — nonlinear special functions”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1883, Springer, Berlin, 2006, 331–411 | DOI | MR | Zbl
[7] Clarkson P. A., Kruskal M. D., “New similarity reductions of the {B}oussinesq equation”, J. Math. Phys., 30 (1989), 2201–2213 | DOI | MR | Zbl
[8] Doliwa A., “Non-commutative lattice-modified {G}el'fand–{D}ikii systems”, J. Phys. A: Math. Theor., 46 (2013), 205202, 14 pp., arXiv: 1302.5594 | DOI | MR | Zbl
[9] Dzhamay A., Sakai H., Takenawa T., Discrete {H}amiltonian structure of {S}chlesinger transformations, arXiv: 1302.2972
[10] Flaschka H., Newell A. C., “Monodromy- and spectrum-preserving deformations, I”, Comm. Math. Phys., 76 (1980), 65–116 | DOI | MR | Zbl
[11] Hay M., “Hierarchies of nonlinear integrable {$q$}-difference equations from series of {L}ax pairs”, J. Phys. A: Math. Theor., 40 (2007), 10457–10471 | DOI | MR | Zbl
[12] Hay M., Hietarinta J., Joshi N., Nijhoff F. W., “A {L}ax pair for a lattice modified {K}d{V} equation, reductions to {$q$}-{P}ainlevé equations and associated {L}ax pairs”, J. Phys. A: Math. Theor., 40 (2007), F61–F73 | DOI | MR | Zbl
[13] Hay M., Howes P., Shi Y., A systematic approach to reductions of type-{Q} {ABS} equations, arXiv: 1307.3390
[14] Hay M., Kajiwara K., Masuda T., “Bilinearization and special solutions to the discrete {S}chwarzian {K}d{V} equation”, J. Math-for-Ind., 3A (2011), 53–62, arXiv: 1102.1829 | MR | Zbl
[15] Hone A. N. W., van der Kamp P. H., Quispel G. R. W., Tran D. T., “Integrability of reductions of the discrete {K}orteweg–de {V}ries and potential {K}orteweg–de {V}ries equations”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 469 (2013), 20120747, 23 pp., arXiv: 1211.6958 | DOI
[16] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl
[17] Jimbo M., Sakai H., “A {$q$}-analog of the sixth {P}ainlevé equation”, Lett. Math. Phys., 38 (1996), 145–154, arXiv: chao-dyn/9507010 | DOI | MR | Zbl
[18] Kajiwara K., The hypergeometric solutions of the additive {P}ainlevé equations with ${E}$-type affine {W}eyl symmetry, {R}eports of RIAM Symposium No 19ME-S2 (in Japanese)
[19] Kajiwara K., Kimura K., “On a {$q$}-difference {P}ainlevé {III} equation. I: {D}erivation, symmetry and {R}iccati type solutions”, J. Nonlinear Math. Phys., 10 (2003), 86–102, arXiv: nlin.SI/0205019 | DOI | MR | Zbl
[20] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “{${}_{10}E_9$} solution to the elliptic {P}ainlevé equation”, J. Phys. A: Math. Gen., 36 (2003), L263–L272, arXiv: nlin.SI/0303032 | DOI | MR | Zbl
[21] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “Construction of hypergeometric solutions to the {$q$}-{P}ainlevé equations”, Int. Math. Res. Not., 2005 (2005), 1441–1463, arXiv: nlin.SI/0501051 | DOI | MR
[22] Kajiwara K., Noumi M., Yamada Y., “A study on the fourth {$q$}-{P}ainlevé equation”, J. Phys. A: Math. Gen., 34 (2001), 8563–8581, arXiv: nlin.SI/0012063 | DOI | MR | Zbl
[23] Kruskal M. D., Tamizhmani K. M., Grammaticos B., Ramani A., “Asymmetric discrete {P}ainlevé equations”, Regul. Chaotic Dyn., 5 (2000), 273–280 | DOI | MR | Zbl
[24] Murata M., “New expressions for discrete {P}ainlevé equations”, Funkcial. Ekvac., 47 (2004), 291–305, arXiv: nlin.SI/0304001 | DOI | MR | Zbl
[25] Murata M., “Lax forms of the {$q$}-{P}ainlevé equations”, J. Phys. A: Math. Theor., 42 (2009), 115201, 17 pp., arXiv: 0810.0058 | DOI | MR | Zbl
[26] Murata M., Sakai H., Yoneda J., “Riccati solutions of discrete {P}ainlevé equations with {W}eyl group symmetry of type {$E^{(1)}_8$}”, J. Math. Phys., 44 (2003), 1396–1414, arXiv: nlin.SI/0210040 | DOI | MR | Zbl
[27] Nijhoff F., Capel H., “The discrete {K}orteweg–de {V}ries equation”, Acta Appl. Math., 39 (1995), 133–158 | DOI | MR | Zbl
[28] Nijhoff F., Hone A., Joshi N., “On a {S}chwarzian {PDE} associated with the {K}d{V} hierarchy”, Phys. Lett. A, 267 (2000), 147–156, arXiv: solv-int/9909026 | DOI | MR | Zbl
[29] Nijhoff F., Joshi N., Hone A., “On the discrete and continuous {M}iura chain associated with the sixth {P}ainlevé equation”, Phys. Lett. A, 264 (2000), 396–406, arXiv: solv-int/9906006 | DOI | MR | Zbl
[30] Nijhoff F.W., Papageorgiou V. G., “Similarity reductions of integrable lattices and discrete analogues of the {P}ainlevé II equation”, Phys. Lett. A, 153 (1991), 337–344 | DOI | MR
[31] Nijhoff F. W., Quispel G. R. W., Capel H. W., “Direct linearization of nonlinear difference-difference equations”, Phys. Lett. A, 97 (1983), 125–128 | DOI | MR
[32] Nijhoff F. W., Ramani A., Grammaticos B., Ohta Y., “On discrete {P}ainlevé equations associated with the lattice {K}d{V} systems and the {P}ainlevé {VI} equation”, Stud. Appl. Math., 106 (2001), 261–314, arXiv: solv-int/9812011 | DOI | MR | Zbl
[33] Nijhoff F. W., Walker A. J., “The discrete and continuous {P}ainlevé {VI} hierarchy and the {G}arnier systems”, Glasg. Math. J., 43A (2001), 109–123, arXiv: nlin.SI/0001054 | DOI | MR | Zbl
[34] Noumi M., “Special functions arising from discrete {P}ainlevé equations: a survey”, J. Comput. Appl. Math., 202 (2007), 48–55 | DOI | MR | Zbl
[35] Ormerod C. M., “The lattice structure of connection preserving deformations for {$q$}-{P}ainlevé equations {I}”, SIGMA, 7 (2011), 045, 22 pp., arXiv: 1010.3036 | DOI | MR | Zbl
[36] Ormerod C. M., “A study of the associated linear problem for $q$-${\rm P}_{\rm V}$”, J. Phys. A: Math. Theor., 44 (2011), 025201, 26 pp., arXiv: 0911.5552 | DOI | Zbl
[37] Ormerod C. M., “Reductions of lattice m{K}d{V} to {$q$}-{${\rm P}_{\rm VI}$}”, Phys. Lett. A, 376 (2012), 2855–2859, arXiv: 1112.2419 | DOI | MR | Zbl
[38] Ormerod C. M., van der Kamp P. H., Hietarinta J., Quispel G. R. W., Twisted reductions of integrable lattice equations, and their {L}ax representations, arXiv: 1307.5208
[39] Ormerod C. M., van der Kamp P. H., Quispel G. R. W., “Discrete {P}ainlevé equations and their {L}ax pairs as reductions of integrable lattice equations”, J. Phys. A: Math. Theor., 46 (2013), 095204, 22 pp., arXiv: 1209.4721 | DOI | MR | Zbl
[40] Ormerod C. M., Witte N. S., Forrester P. J., “Connection preserving deformations and {$q$}-semi-classical orthogonal polynomials”, Nonlinearity, 24 (2011), 2405–2434, arXiv: 0906.0640 | DOI | MR | Zbl
[41] Papageorgiou V. G., Nijhoff F. W., Capel H. W., “Integrable mappings and nonlinear integrable lattice equations”, Phys. Lett. A, 147 (1990), 106–114 | DOI | MR
[42] Papageorgiou V. G., Nijhoff F. W., Grammaticos B., Ramani A., “Isomonodromic deformation problems for discrete analogues of {P}ainlevé equations”, Phys. Lett. A, 164 (1992), 57–64 | DOI | MR
[43] Praagman C., “Fundamental solutions for meromorphic linear difference equations in the complex plane, and related problems”, J. Reine Angew. Math., 369 (1986), 101–109 | DOI | MR | Zbl
[44] Rains E. M., “An isomonodromy interpretation of the hypergeometric solution of the elliptic {P}ainlevé equation (and generalizations)”, SIGMA, 7 (2011), 088, 24 pp., arXiv: 0807.0258 | DOI | MR | Zbl
[45] Ramani A., Carstea A. S., Grammaticos B., “On the non-autonomous form of the {$Q_4$} mapping and its relation to elliptic {P}ainlevé equations”, J. Phys. A: Math. Theor., 42 (2009), 322003, 8 pp. | DOI | MR | Zbl
[46] Ramani A., Grammaticos B., Tamizhmani T., Tamizhmani K. M., “Special function solutions of the discrete {P}ainlevé equations”, Comput. Math. Appl., 42 (2001), 603–614 | DOI | MR | Zbl
[47] Sakai H., “Rational surfaces associated with affine root systems and geometry of the {P}ainlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl
[48] Sakai H., “Hypergeometric solution of {$q$}-{S}chlesinger system of rank two”, Lett. Math. Phys., 73 (2005), 237–247 | DOI | MR | Zbl
[49] Sakai H., “Lax form of the {$q$}-{P}ainlevé equation associated with the {$A^{(1)}_2$} surface”, J. Phys. A: Math. Gen., 39 (2006), 12203–12210 | DOI | MR | Zbl
[50] Tran D. T., van der Kamp P. H., Quispel G. R. W., “Involutivity of integrals of sine-{G}ordon, modified {K}d{V} and potential {K}d{V} maps”, J. Phys. A: Math. Theor., 44 (2011), 295206, 13 pp., arXiv: 1010.3471 | DOI | MR | Zbl
[51] van der Kamp P. H., Quispel G. R. W., “The staircase method: integrals for periodic reductions of integrable lattice equations”, J. Phys. A: Math. Theor., 43 (2010), 465207, 34 pp., arXiv: 1005.2071 | DOI | MR | Zbl
[52] Witte N. S., The correspondence between the {A}skey table of orthogonal polynomial systems and the {S}akai scheme of discrete {P}ainlevé equations, in preparation
[53] Witte N. S., Ormerod C. M., “Construction of a {L}ax pair for the {$E_6^{(1)}$} {$q$}-{P}ainlevé system”, SIGMA, 8 (2012), 097, 27 pp., arXiv: 1207.0041 | DOI | MR | Zbl
[54] Yamada Y., “Padé method to {P}ainlevé equations”, Funkcial. Ekvac., 52 (2009), 83–92 | DOI | MR | Zbl
[55] Yamada Y., “Lax formalism for {$q$}-{P}ainlevé equations with affine {W}eyl group symmetry of type {$E^{(1)}_n$}”, Int. Math. Res. Not., 2011 (2011), 3823–3838, arXiv: 1004.1687 | DOI | MR | Zbl