@article{SIGMA_2013_9_a81,
author = {Martin Bojowald},
title = {Mathematical {Structure} of {Loop} {Quantum} {Cosmology:} {Homogeneous} {Models}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a81/}
}
Martin Bojowald. Mathematical Structure of Loop Quantum Cosmology: Homogeneous Models. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a81/
[1] Anderson I. M., Fels M. E., Torre C. G., “Group invariant solutions without transversality”, Comm. Math. Phys., 212 (2000), 653–686, arXiv: math-ph/9910014 | DOI | MR | Zbl
[2] Ashtekar A., Bojowald M., Lewandowski J., “Mathematical structure of loop quantum cosmology”, Adv. Theor. Math. Phys., 7 (2003), 233–268, arXiv: gr-qc/0304074 | DOI | MR
[3] Ashtekar A., Lewandowski J., “Projective techniques and functional integration for gauge theories”, J. Math. Phys., 36 (1995), 2170–2191, arXiv: gr-qc/9411046 | DOI | MR | Zbl
[4] Ashtekar A., Lewandowski J., “Background independent quantum gravity: a status report”, Classical Quantum Gravity, 21 (2004), R53–R152, arXiv: gr-qc/0404018 | DOI | MR | Zbl
[5] Ashtekar A., Pawlowski T., Singh P., “Quantum nature of the big bang: an analytical and numerical investigation”, Phys. Rev. D, 73 (2006), 124038, 33 pp., arXiv: gr-qc/0604013 | DOI | MR
[6] Ashtekar A., Pawlowski T., Singh P., “Quantum nature of the big bang: improved dynamics”, Phys. Rev. D, 74 (2006), 084003, 23 pp., arXiv: gr-qc/0607039 | DOI | MR | Zbl
[7] Ashtekar A., Pawlowski T., Singh P., Vandersloot K., “Loop quantum cosmology of {$k=1$} {FRW} models”, Phys. Rev. D, 75 (2007), 024035, 26 pp., arXiv: gr-qc/0612104 | DOI | MR | Zbl
[8] Ashtekar A., Wilson-Ewing E., “Loop quantum cosmology of {B}ianchi type {I} models”, Phys. Rev. D, 79 (2009), 083535, 21 pp., arXiv: 0903.3397 | DOI | MR
[9] Ashtekar A., Wilson-Ewing E., “Loop quantum cosmology of {B}ianchi type {II} models”, Phys. Rev. D, 80 (2009), 123532, 16 pp., arXiv: 0910.1278 | DOI | MR
[10] Bianchi E., Rovelli C., Vidotto F., “Towards spinfoam cosmology”, Phys. Rev. D, 82 (2010), 084035, 8 pp., arXiv: 1003.3483 | DOI
[11] Bojowald M., “Loop quantum cosmology. I: Kinematics”, Classical Quantum Gravity, 17 (2000), 1489–1508, arXiv: gr-qc/9910103 | DOI | MR | Zbl
[12] Bojowald M., “Loop quantum cosmology. II: {V}olume operators”, Classical Quantum Gravity, 17 (2000), 1509–1526, arXiv: gr-qc/9910104 | DOI | MR | Zbl
[13] Bojowald M., “Loop quantum cosmology. III: {W}heeler–{D}e{W}itt operators”, Classical Quantum Gravity, 18 (2001), 1055–1069, arXiv: gr-qc/0008052 | DOI | MR | Zbl
[14] Bojowald M., “Absence of a singularity in loop quantum cosmology”, Phys. Rev. Lett., 86 (2001), 5227–5230, arXiv: gr-qc/0102069 | DOI | MR
[15] Bojowald M., “The semiclassical limit of loop quantum cosmology”, Classical Quantum Gravity, 18 (2001), L109–L116, arXiv: gr-qc/0105113 | DOI | MR | Zbl
[16] Bojowald M., “Isotropic loop quantum cosmology”, Classical Quantum Gravity, 19 (2002), 2717–2741, arXiv: gr-qc/0202077 | DOI | MR | Zbl
[17] Bojowald M., “Homogeneous loop quantum cosmology”, Classical Quantum Gravity, 20 (2003), 2595–2615, arXiv: gr-qc/0303073 | DOI | MR | Zbl
[18] Bojowald M., “Degenerate configurations, singularities and the non-abelian nature of loop quantum gravity”, Classical Quantum Gravity, 23 (2006), 987–1008, arXiv: gr-qc/0508118 | DOI | MR | Zbl
[19] Bojowald M., “Loop quantum cosmology and inhomogeneities”, Gen. Relativity Gravitation, 38 (2006), 1771–1795, arXiv: gr-qc/0609034 | DOI | MR | Zbl
[20] Bojowald M., “Dynamical coherent states and physical solutions of quantum cosmological bounces”, Phys. Rev. D, 75 (2007), 123512, 16 pp., arXiv: gr-qc/0703144 | DOI | MR
[21] Bojowald M., “Singularities and quantum gravity”, Cosmology and Gravitation, AIP Conf. Proc., 910, Amer. Inst. Phys., Melville, NY, 2007, 294–333, arXiv: gr-qc/0702144 | DOI | MR | Zbl
[22] Bojowald M., “Loop quantum cosmology”, Living Rev. Relativity, 11 (2008), 4, 131 pp., arXiv: gr-qc/0601085 | DOI | MR
[23] Bojowald M., “The dark side of a patchwork universe”, Gen. Relativity Gravitation, 40 (2008), 639–660, arXiv: 0705.4398 | DOI | MR | Zbl
[24] Bojowald M., “Consistent loop quantum cosmology”, Classical Quantum Gravity, 26 (2009), 075020, 10 pp., arXiv: 0811.4129 | DOI | MR | Zbl
[25] Bojowald M., Canonical gravity and applications: cosmology, black holes, and quantum gravity, Cambridge University Press, Cambridge, 2010
[26] Bojowald M., Quantum cosmology: a fundamental theory of the Universe, Lecture Notes in Physics, 835, Springer, New York, 2011 | DOI | Zbl
[27] Bojowald M., Calcagni G., “Inflationary observables in loop quantum cosmology”, J. Cosmol. Astropart. Phys., 2011:3 (2011), 032, 35 pp., arXiv: 1011.2779 | DOI | MR
[28] Bojowald M., Calcagni G., Tsujikawa S., “Observational constraints on loop quantum cosmology”, Phys. Rev. Lett., 107 (2011), 211302, 5 pp., arXiv: 1101.5391 | DOI
[29] Bojowald M., Calcagni G., Tsujikawa S., “Observational test of inflation in loop quantum cosmology”, J. Cosmol. Astropart. Phys., 2011:11 (2011), 046, 32 pp., arXiv: 1107.1540 | DOI
[30] Bojowald M., Cartin D., Khanna G., “Lattice refining loop quantum cosmology, anisotropic models, and stability”, Phys. Rev. D, 76 (2007), 064018, 13 pp., arXiv: 0704.1137 | DOI | MR
[31] Bojowald M., Das R., “Canonical gravity with fermions”, Phys. Rev. D, 78 (2008), 064009, 16 pp., arXiv: 0710.5722 | DOI | MR
[32] Bojowald M., Das R., “Fermions in loop quantum cosmology and the role of parity”, Classical Quantum Gravity, 25 (2008), 195006, 23 pp., arXiv: 0806.2821 | DOI | MR | Zbl
[33] Bojowald M., Date G., Vandersloot K., “Homogeneous loop quantum cosmology: the role of the spin connection”, Classical Quantum Gravity, 21 (2004), 1253–1278, arXiv: gr-qc/0311004 | DOI | MR | Zbl
[34] Bojowald M., Hossain G. M., Kagan M., Shankaranarayanan S., “Anomaly freedom in perturbative loop quantum gravity”, Phys. Rev. D, 78 (2008), 063547, 31 pp., arXiv: 0806.3929 | DOI | MR
[35] Bojowald M., Kagan M., Hernández H. H., Skirzewski A., “Effective constraints of loop quantum gravity”, Phys. Rev. D, 75 (2007), 064022, 25 pp., arXiv: gr-qc/0611112 | DOI | MR
[36] Bojowald M., Kastrup H. A., “Symmetry reduction for quantized diffeomorphism-invariant theories of connections”, Classical Quantum Gravity, 17 (2000), 3009–3043, arXiv: hep-th/9907042 | DOI | MR | Zbl
[37] Bojowald M., Paily G. M., “Deformed general relativity and effective actions from loop quantum gravity”, Phys. Rev. D, 86 (2012), 104018, 24 pp., arXiv: 1112.1899 | DOI
[38] Bojowald M., Paily G. M., “Deformed general relativity”, Phys. Rev. D, 87 (2013), 044044, 7 pp., arXiv: 1212.4773 | DOI
[39] Bojowald M., Paily G. M., Reyes J. D., Tibrewala R., “Black-hole horizons in modified spacetime structures arising from canonical quantum gravity”, Classical Quantum Gravity, 28 (2011), 185006, 34 pp., arXiv: 1105.1340 | DOI | MR | Zbl
[40] Bojowald M., Perez A., Spin foam quantization and anomalies,, Gen. Relativity Gravitation, 42 (2010), 877–907, arXiv: gr-qc/0303026 | DOI | MR | Zbl
[41] Bojowald M., Reyes J. D., Tibrewala R., “Nonmarginal {L}emaitre–{T}olman–{B}ondi-like models with inverse triad corrections from loop quantum gravity”, Phys. Rev. D, 80 (2009), 084002, 19 pp., arXiv: 0906.4767 | DOI | MR
[42] Bojowald M., Sandhöfer B., Skirzewski A., Tsobanjan A., “Effective constraints for quantum systems”, Rev. Math. Phys., 21 (2009), 111–154, arXiv: 0804.3365 | DOI | MR | Zbl
[43] Bojowald M., Skirzewski A., “Effective equations of motion for quantum systems”, Rev. Math. Phys., 18 (2006), 713–745, arXiv: math-ph/0511043 | DOI | MR | Zbl
[44] Brodbeck O., “On symmetric gauge fields for arbitrary gauge and symmetry groups”, Helv. Phys. Acta, 69 (1996), 321–324, arXiv: gr-qc/9610024 | MR | Zbl
[45] Brunnemann J., Fleischhack C., On the configuration spaces of homogeneous loop quantum cosmology and loop quantum gravity, arXiv: 0709.1621
[46] Brunnemann J., Rideout D., “Properties of the volume operator in loop quantum gravity. I: {R}esults”, Classical Quantum Gravity, 25 (2008), 065001, 32 pp., arXiv: 0706.0469 | DOI | MR | Zbl
[47] Brunnemann J., Rideout D., “Properties of the volume operator in loop quantum gravity. II: {D}etailed presentation”, Classical Quantum Gravity, 25 (2008), 065002, 104 pp., arXiv: 0706.0382 | DOI | MR | Zbl
[48] Brunnemann J., Thiemann T., “Unboundedness of triad-like operators in loop quantum gravity”, Classical Quantum Gravity, 23 (2006), 1429–1483, arXiv: gr-qc/0505033 | DOI | MR | Zbl
[49] Buchert T., “Toward physical cosmology: focus on inhomogeneous geometry and its non-perturbative effects”, Classical Quantum Gravity, 28 (2011), 164007, 29 pp., arXiv: 1103.2016 | DOI | MR | Zbl
[50] Cailleteau T., Mielczarek J., Barrau A., Grain J., “Anomaly-free scalar perturbations with holonomy corrections in loop quantum cosmology”, Classical Quantum Gravity, 29 (2012), 095010, 17 pp., arXiv: 1111.3535 | DOI | MR | Zbl
[51] Chiou D. W., Effective dynamics for the cosmological bounces in Bianchi type I loop quantum cosmology, arXiv: gr-qc/0703010
[52] Chiou D. W., Vandersloot K., “Behavior of nonlinear anisotropies in bouncing {B}ianchi {I} models of loop quantum cosmology”, Phys. Rev. D, 76 (2007), 084015, 15 pp., arXiv: 0707.2548 | DOI | MR
[53] Cianfrani F., Marchini A., Montani G., “The picture of the Bianchi I model via gauge fixing in loop quantum gravity”, Europhys. Lett., 99 (2011), 10003, 6 pp., arXiv: 1201.2588 | DOI
[54] Cianfrani F., Montani G., “Implications of the gauge-fixing in loop quantum cosmology”, Phys. Rev. D, 85 (2012), 024027, 7 pp., arXiv: 1104.4546 | DOI
[55] Dittrich B., Guedes C., Oriti D., “On the space of generalized fluxes for loop quantum gravity”, Classical Quantum Gravity, 30 (2013), 055008, 24 pp., arXiv: 1205.6166 | DOI | MR | Zbl
[56] Dittrich B., Höhn P. A., “Canonical simplicial gravity”, Classical Quantum Gravity, 29 (2012), 115009, 52 pp., arXiv: 1108.1974 | DOI | MR | Zbl
[57] Doldán R., Gambini R., Mora P., “Quantum mechanics for totally constrained dynamical systems and evolving {H}ilbert spaces”, Internat. J. Theoret. Phys., 35 (1996), 2057–2074, arXiv: hep-th/9404169 | DOI | MR | Zbl
[58] Ellis G. F. R., Buchert T., “The universe seen at different scales”, Phys. Lett. A, 347 (2005), 38–46, arXiv: gr-qc/0506106 | DOI | MR | Zbl
[59] Engle J., “Quantum field theory and its symmetry reduction”, Classical Quantum Gravity, 23 (2006), 2861–2893, arXiv: gr-qc/0511107 | DOI | MR | Zbl
[60] Engle J., “Relating loop quantum cosmology to loop quantum gravity: symmetric sectors and embeddings”, Classical Quantum Gravity, 24 (2007), 5777–5802, arXiv: gr-qc/0701132 | DOI | MR | Zbl
[61] Fewster C. J., Sahlmann H., “Phase space quantization and loop quantum cosmology: a {W}igner function for the {B}ohr-compactified real line”, Classical Quantum Gravity, 25 (2008), 225015, 20 pp., arXiv: 0804.2541 | DOI | MR | Zbl
[62] Fleischhack C., “Representations of the {W}eyl algebra in quantum geometry”, Comm. Math. Phys., 285 (2009), 67–140, arXiv: math-ph/0407006 | DOI | MR | Zbl
[63] Gaul M., Rovelli C., “A generalized {H}amiltonian constraint operator in loop quantum gravity and its simplest {E}uclidean matrix elements”, Classical Quantum Gravity, 18 (2001), 1593–1624, arXiv: gr-qc/0011106 | DOI | MR | Zbl
[64] Giesel K., Thiemann T., “Consistency check on volume and triad operator quantization in loop quantum gravity, I”, Classical Quantum Gravity, 23 (2006), 5667–5691, arXiv: gr-qc/0507036 | DOI | MR | Zbl
[65] Henderson A., Laddha A., Tomlin C., “Constraint algebra in loop quantum gravity reloaded. I: Toy model of a ${\rm U}(1)^{3}$ gauge theory”, Phys. Rev. D, 88 (2013), 044028, 38 pp., arXiv: 1204.0211 | DOI
[66] Höhn P. A., From classical to quantum: new canonical tools for the dynamics of gravity, Ph. D. Thesis, Utrecht University, 2012
[67] Jacobson T., “Trans-{P}lanckian redshifts and the substance of the space-time river”, Progr. Theoret. Phys. Suppl., 1999, 1–17, arXiv: hep-th/0001085 | DOI | MR
[68] Kamiński W., Lewandowski J., “The flat {FRW} model in {LQC}: self-adjointness”, Classical Quantum Gravity, 25 (2008), 035001, 11 pp., arXiv: 0709.3120 | DOI | MR | Zbl
[69] Kamiński W., Pawlowski T., “Loop quantum cosmology evolution operator of an FRW universe with a positive cosmological constant”, Phys. Rev. D, 81 (2010), 024014, 9 pp., arXiv: 0912.0162 | DOI
[70] Klauder J. R., “Affine quantum gravity”, Internat. J. Modern Phys. D, 12 (2003), 1769–1773, arXiv: gr-qc/0305067 | DOI | MR
[71] Kobayashi S., Nomizu K., Foundations of differential geometry, v. I, Interscience Publishers, New York–London, 1963 | MR | Zbl
[72] Kreienbuehl A., Husain V., Seahra S. S., “Modified general relativity as a model for quantum gravitational collapse”, Classical Quantum Gravity, 29 (2012), 095008, 19 pp., arXiv: 1011.2381 | DOI | MR | Zbl
[73] Kuchař K. V., Ryan Jr. M. P., “Is minisuperspace quantization valid?: {T}aub in mixmaster”, Phys. Rev. D, 40 (1989), 3982–3996 | DOI | MR
[74] Lewandowski J., Okołów A., Sahlmann H., Thiemann T., “Uniqueness of diffeomorphism invariant states on holonomy-flux algebras”, Comm. Math. Phys., 267 (2006), 703–733, arXiv: gr-qc/0504147 | DOI | MR | Zbl
[75] Livine E. R., Martín-Benito M., “Classical setting and effective dynamics for spinfoam cosmology”, Classical Quantum Gravity, 30 (2013), 035006, 50 pp., arXiv: 1111.2867 | DOI | MR | Zbl
[76] MacCallum M. A. H., Taub A. H., “Variational principles and spatially-homogeneous universes, including rotation”, Comm. Math. Phys., 25 (1972), 173–189 | DOI | MR
[77] Małkiewicz P., “Reduced phase space approach to {K}asner universe and the problem of time in quantum theory”, Classical Quantum Gravity, 29 (2012), 075008, 21 pp., arXiv: 1105.6030 | DOI | MR
[78] Martín-Benito M., Mena Marugán G. A., Pawlowski T., “Physical evolution in loop quantum cosmology: the example of the vacuum {B}ianchi {I} model”, Phys. Rev. D, 80 (2009), 084038, 23 pp., arXiv: 0906.3751 | DOI | MR
[79] Misner C. W., “Mixmaster Universe”, Phys. Rev. Lett., 22 (1969), 1071–1074 | DOI | Zbl
[80] Murugan J., Weltman A., Ellis G. F. R. (eds.), Foundations of space and time. Reflections on quantum gravity, Cambridge University Press, Cambridge, 2012 | MR
[81] Perez A., “Spin foam models for quantum gravity”, Classical Quantum Gravity, 20 (2003), R43–R104, arXiv: gr-qc/0301113 | DOI | MR | Zbl
[82] Perez A., “Regularization ambiguities in loop quantum gravity”, Phys. Rev. D, 73 (2006), 044007, 18 pp., arXiv: gr-qc/0509118 | DOI | MR
[83] Perez A., Pranzetti D., “On the regularization of the constraint algebra of quantum gravity in {$2+1$} dimensions with a nonvanishing cosmological constant”, Classical Quantum Gravity, 27 (2010), 145009, 20 pp., arXiv: 1001.3292 | DOI | MR | Zbl
[84] Reisenberger M. P., Rovelli C., ““{S}um over surfaces” form of loop quantum gravity”, Phys. Rev. D, 56 (1997), 3490–3508, arXiv: gr-qc/9612035 | DOI | MR
[85] Reyes J. D., Spherically symmetric loop quantum gravity: connections to 2-dimensional models and applications to gravitational collapse, Ph.D. Thesis, The Pennsylvania State University, 2009
[86] Rovelli C., “Loop quantum gravity”, Living Rev. Relativ., 1 (1998), 1, 75 pp., arXiv: gr-qc/9710008 | DOI | MR | Zbl
[87] Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[88] Rovelli C., Smolin L., “The physical {H}amiltonian in nonperturbative quantum gravity”, Phys. Rev. Lett., 72 (1994), 446–449, arXiv: gr-qc/9308002 | DOI | MR | Zbl
[89] Rovelli C., Smolin L., “Spin networks and quantum gravity”, Phys. Rev. D, 52 (1995), 5743–5759 | DOI | MR
[90] Rovelli C., Vidotto F., “Stepping out of homogeneity in loop quantum cosmology”, Classical Quantum Gravity, 25 (2008), 225024, 16 pp., arXiv: 0805.4585 | DOI | MR | Zbl
[91] Thiemann T., “Quantum spin dynamics ({QSD})”, Classical Quantum Gravity, 15 (1998), 839–873, arXiv: gr-qc/9606089 | DOI | MR | Zbl
[92] Thiemann T., “Quantum spin dynamics ({QSD}). V: Quantum gravity as the natural regulator of the {H}amiltonian constraint of matter quantum field theories”, Classical Quantum Gravity, 15 (1998), 1281–1314, arXiv: gr-qc/9705019 | DOI | MR | Zbl
[93] Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007, arXiv: gr-qc/0110034 | DOI | MR | Zbl
[94] Torre C. G., “Midisuperspace models of canonical quantum gravity”, Internat. J. Theoret. Phys., 38 (1999), 1081–1102, arXiv: gr-qc/9806122 | DOI | MR | Zbl
[95] Unruh W., “Time, gravity, and quantum mechanics”, Time's Arrows Today (Vancouver, BC, 1992), ed. S. F. Savitt, Cambridge University Press, Cambridge, 1995, 23–65, arXiv: gr-qc/9312027 | DOI | MR
[96] Vandersloot K., “Hamiltonian constraint of loop quantum cosmology”, Phys. Rev. D, 71 (2005), 103506, 13 pp., arXiv: gr-qc/0502082 | DOI | MR
[97] Velhinho J. M., “Comments on the kinematical structure of loop quantum cosmology”, Classical Quantum Gravity, 21 (2004), L109–L113, arXiv: gr-qc/0406008 | DOI | MR | Zbl
[98] Velhinho J. M., “The quantum configuration space of loop quantum cosmology”, Classical Quantum Gravity, 24 (2007), 3745–3758, arXiv: 0704.2397 | DOI | MR | Zbl
[99] Weiss N., “Constraints on {H}amiltonian lattice formulations of field theories in an expanding universe”, Phys. Rev. D, 32 (1985), 3228–3232 | DOI | MR
[100] Wilson-Ewing E., “Loop quantum cosmology of Bianchi type IX models”, Phys. Rev. D, 82 (2010), 043508, 13 pp., arXiv: 1005.5565 | DOI | MR
[101] Wilson-Ewing E., “Holonomy corrections in the effective equations for scalar mode perturbations in loop quantum cosmology”, Classical Quantum Gravity, 29 (2012), 085005, 19 pp., arXiv: 1108.6265 | DOI | MR | Zbl