@article{SIGMA_2013_9_a80,
author = {Kenny De Commer},
title = {Representation {Theory} of {Quantized} {Enveloping} {Algebras} with {Interpolating} {Real} {Structure}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a80/}
}
Kenny De Commer. Representation Theory of Quantized Enveloping Algebras with Interpolating Real Structure. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a80/
[1] Bichon J., “Hopf–{G}alois systems”, J. Algebra, 264 (2003), 565–581, arXiv: math.QA/0204348 | DOI | MR | Zbl
[2] Bichon J., Hopf–Galois objects and cogroupoids, arXiv: 1006.3014
[3] Boca F. P., “Ergodic actions of compact matrix pseudogroups on {$C^*$}-algebras”, Astérisque, 232, 1995, 93–109 | MR | Zbl
[4] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[5] De Commer K., “Comonoidal {${\rm W}^*$}-{M}orita equivalence for von {N}eumann bialgebras”, J. Noncommut. Geom., 5 (2011), 547–571, arXiv: 1004.0824 | DOI | MR | Zbl
[6] De Commer K., “On a correspondence between ${\rm SU}_q(2)$, $\widetilde{E}_q(2)$ and $\widetilde{\rm SU}_q(1,1)$”, Comm. Math. Phys., 304 (2011), 187–228, arXiv: 1004.4307 | DOI | MR | Zbl
[7] De Commer K., “On a {M}orita equivalence between the duals of quantum {${\rm SU}(2)$} and quantum {$\widetilde{E}(2)$}”, Adv. Math., 229 (2012), 1047–1079, arXiv: 0912.4350 | DOI | MR | Zbl
[8] De Commer K., “On the construction of quantum homogeneous spaces from {$^*$}-{G}alois objects”, Algebr. Represent. Theory, 15 (2012), 795–815, arXiv: 1001.2153 | DOI | MR | Zbl
[9] De Concini C., Kac V. G., “Representations of quantum groups at roots of {$1$}”, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989), Progr. Math., 92, Birkhäuser Boston, Boston, MA, 1990, 471–506 | MR
[10] Donin J., Mudrov A., “Explicit equivariant quantization on coadjoint orbits of {${\rm GL}(n,{\mathbb C})$}”, Lett. Math. Phys., 62 (2002), 17–32, arXiv: math.QA/0206049 | DOI | MR | Zbl
[11] Enock M., “Morita equivalence of measured quantum groupoids. {A}pplication to deformation of measured quantum groupoids by 2-cocycles”, Operator Algebras and Quantum Groups, Banach Center Publ., 98, eds. W. Pusz, P. M. Soltan, Polish Acad. Sci. Inst. Math., Warsaw, 2012, 107–198, arXiv: 1106.1018 | DOI | MR | Zbl
[12] Gilmore R., Lie groups, physics, and geometry. An introduction for physicists, engineers and chemists, Cambridge University Press, Cambridge, 2008 | DOI | MR | Zbl
[13] Hayashi T., “Face algebras. I: {A} generalization of quantum group theory”, J. Math. Soc. Japan, 50 (1998), 293–315 | DOI | MR | Zbl
[14] Helgason S., Differential geometry, {L}ie groups, and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press Inc., New York, 1978 | MR | Zbl
[15] Humphreys J. E., Representations of semisimple {L}ie algebras in the {BGG} category {$\mathcal{O}$}, Graduate Studies in Mathematics, 94, American Mathematical Society, Providence, RI, 2008 | MR | Zbl
[16] Joseph A., Letzter G., “Local finiteness of the adjoint action for quantized enveloping algebras”, J. Algebra, 153 (1992), 289–318 | DOI | MR | Zbl
[17] Joseph A., Letzter G., “Separation of variables for quantized enveloping algebras”, Amer. J. Math., 116 (1994), 127–177 | DOI | MR | Zbl
[18] Joseph A., Todorić D., “On the quantum {KPRV} determinants for semisimple and affine {L}ie algebras”, Algebr. Represent. Theory, 5 (2002), 57–99 | DOI | MR | Zbl
[19] Karolinsky E., Stolin A., Tarasov V., “Irreducible highest weight modules and equivariant quantization”, Adv. Math., 211 (2007), 266–283, arXiv: math.QA/0507348 | DOI | MR | Zbl
[20] Kashiwara M., “On crystal bases of the {$Q$}-analogue of universal enveloping algebras”, Duke Math. J., 63 (1991), 465–516 | DOI | MR | Zbl
[21] Kassel C., Schneider H. J., “Homotopy theory of {H}opf {G}alois extensions”, Ann. Inst. Fourier (Grenoble), 55 (2005), 2521–2550, arXiv: math.QA/0402034 | DOI | MR | Zbl
[22] Knapp A. W., Representation theory of semisimple groups. An overview based on examples, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2001 | MR | Zbl
[23] Korogodsky L. I., Representations of quantum algebras arising from non-compact quantum groups: {Q}uantum orbit method and super-tensor products, Ph. D. Thesis, Massachusetts Institute of Technology, 1996 http://dspace.mit.edu/handle/1721.1/39076
[24] Letzter G., “Quantum symmetric pairs and their zonal spherical functions”, Transform. Groups, 8 (2003), 261–292, arXiv: math.QA/0204103 | DOI | MR | Zbl
[25] Letzter G., “Quantum zonal spherical functions and {M}acdonald polynomials”, Adv. Math., 189 (2004), 88–147, arXiv: math.QA/0210447 | DOI | MR | Zbl
[26] Levendorskiĭ S., Soibelman Y., “Algebras of functions on compact quantum groups, {S}chubert cells and quantum tori”, Comm. Math. Phys., 139 (1991), 141–170 | DOI | MR | Zbl
[27] Masuda T., Nakagami Y., Watanabe J., “Noncommutative differential geometry on the quantum two sphere of {P}odleś. I: An algebraic viewpoint”, $K$-Theory, 5 (1991), 151–175 | DOI | MR | Zbl
[28] Mudrov A., “Quantum conjugacy classes of simple matrix groups”, Comm. Math. Phys., 272 (2007), 635–660, arXiv: math.QA/0412538 | DOI | MR | Zbl
[29] Reshetikhin N., Yakimov M., “Quantum invariant measures”, Comm. Math. Phys., 224 (2001), 399–426, arXiv: math.QA/0101048 | DOI | MR | Zbl
[30] Rosso M., Groupes quantiques, représentations linéaires et applications, Ph. D. Thesis, Universite de Paris VII, 1990
[31] Vaksman L. L., Quantum bounded symmetric domains, Translations of Mathematical Monographs, 238, American Mathematical Society, Providence, RI, 2010 | MR | Zbl
[32] Woronowicz S. L., “Compact matrix pseudogroups”, Comm. Math. Phys., 111 (1987), 613–665 | DOI | MR | Zbl
[33] Woronowicz S. L., “Twisted {${\rm SU}(2)$} group. {A}n example of a noncommutative differential calculus”, Publ. Res. Inst. Math. Sci., 23 (1987), 117–181 | DOI | MR | Zbl