Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a general solution-generating result within the bidifferential calculus approach to integrable partial differential and difference equations, based on a binary Darboux-type transformation. This is then applied to the non-autonomous chiral model, a certain reduction of which is known to appear in the case of the $D$-dimensional vacuum Einstein equations with $D-2$ commuting Killing vector fields. A large class of exact solutions is obtained, and the aforementioned reduction is implemented. This results in an alternative to the well-known Belinski–Zakharov formalism. We recover relevant examples of space-times in dimensions four (Kerr-NUT, Tomimatsu–Sato) and five (single and double Myers–Perry black holes, black saturn, bicycling black rings).
Keywords: bidifferential calculus; binary Darboux transformation; chiral model; Einstein equations; black ring.
@article{SIGMA_2013_9_a8,
     author = {Aristophanes Dimakis and Folkert M\"uller-Hoissen},
     title = {Binary {Darboux} {Transformations} in {Bidifferential} {Calculus} and {Integrable} {Reductions} of {Vacuum} {Einstein} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a8/}
}
TY  - JOUR
AU  - Aristophanes Dimakis
AU  - Folkert Müller-Hoissen
TI  - Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a8/
LA  - en
ID  - SIGMA_2013_9_a8
ER  - 
%0 Journal Article
%A Aristophanes Dimakis
%A Folkert Müller-Hoissen
%T Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a8/
%G en
%F SIGMA_2013_9_a8
Aristophanes Dimakis; Folkert Müller-Hoissen. Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a8/

[1] Arsie A., Lorenzoni P., “$F$-manifolds with eventual identities, bidifferential calculus and twisted Lenard–Magri chains”, Int. Math. Res. Not. (to appear) , arXiv: 1110.2461 | DOI

[2] Belinski V. A., Verdaguer E., Gravitational solitons, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[3] Belinskiĭ V. A., Sakharov V. E., “Stationary gravitational solitons with axial symmetry”, Sov. Phys. JETP, 50 (1979), 1–9 | MR

[4] Belinskiĭ V. A., Zakharov V. E., “Integration of the Einstein equations by means of the inverse scattering problem technique and construction of exact soliton solutions”, Sov. Phys. JETP, 48 (1978), 985–994 | MR

[5] Breitenlohner P., Maison D., Gibbons G., “$4$-dimensional black holes from Kaluza–Klein theories”, Comm. Math. Phys., 120 (1988), 295–333 | DOI | MR | Zbl

[6] Camacaro J., Cariñena J., “Alternative Lie algebroid structures and bi-differential calculi”, Applied Differential Geometry and Mechanics, eds. W. Sarlet, F. Cantrijn, University of Gent, 2003, 1–20

[7] Chavchanidze G., “Non-Noether symmetries in Hamiltonian dynamical systems”, Mem. Differential Equations Math. Phys., 36 (2005), 81–134, arXiv: math-ph/0405003 | MR | Zbl

[8] Chen Y., Hong K., Teo E., “Unbalanced Pomeransky–Sen'kov black ring”, Phys. Rev. D, 84 (2011), 084030, 11 pp., arXiv: 1108.1849 | DOI

[9] Chen Y., Teo E., “Rod-structure classification of gravitational instantons with $U(1)\times U(1)$ isometry”, Nuclear Phys. B, 838 (2010), 207–237, arXiv: 1004.2750 | DOI | MR | Zbl

[10] Chruściel P., Cortier J., “Maximal analytic extensions of the Emparan–Reall black ring”, J. Phys. Conf. Ser., 229 (2010), 012030, 4 pp., arXiv: 0807.2309 | DOI | MR

[11] Chruściel P. T., Eckstein M., Szybka S. J., “On smoothness of black saturns”, J. High Energy Phys., 2010:11 (2010), 048, 39 pp., arXiv: 1007.3668 | DOI | MR

[12] Cieśliński J. L., “Algebraic construction of the Darboux matrix revisited”, J. Phys. A: Math. Theor., 42 (2009), 404003, 40 pp., arXiv: 0904.3987 | DOI | MR | Zbl

[13] Crampin M., Sarlet W., Thompson G., “Bi-differential calculi, bi-Hamiltonian systems and conformal Killing tensors”, J. Phys. A: Math. Gen., 33 (2000), 8755–8770 | DOI | MR | Zbl

[14] de Souza E., Bhattacharyya S. P., “Controllability, observability and the solution of $AX-XB=C$”, Linear Algebra Appl., 39 (1981), 167–188 | DOI | MR | Zbl

[15] Dimakis A., Kanning N., Müller-Hoissen F., “The non-autonomous chiral model and the Ernst equation of general relativity in the bidifferential calculus framework”, SIGMA, 7 (2011), 118, 27 pp., arXiv: 1106.4122 | DOI | MR | Zbl

[16] Dimakis A., Müller-Hoissen F., “Bi-differential calculi and integrable models”, J. Phys. A: Math. Gen., 33 (2000), 957–974, arXiv: math-ph/9908015 | DOI | MR

[17] Dimakis A., Müller-Hoissen F., “Bicomplexes and integrable models”, J. Phys. A: Math. Gen., 33 (2000), 6579–6591, arXiv: nlin.SI/0006029 | DOI | MR | Zbl

[18] Dimakis A., Müller-Hoissen F., “Bidifferential calculus approach to AKNS hierarchies and their solutions”, SIGMA, 6 (2010), 055, 27 pp., arXiv: 1004.1627 | DOI | MR | Zbl

[19] Dimakis A., Müller-Hoissen F., “Bidifferential graded algebras and integrable systems”, Discrete Contin. Dyn. Syst., 2009, suppl., 208–219, arXiv: 0805.4553 | MR | Zbl

[20] Dimakis A., Müller-Hoissen F., “Solutions of matrix NLS systems and their discretizations: a unified treatment”, Inverse Problems, 26 (2010), 095007, 55 pp., arXiv: 1001.0133 | DOI | MR | Zbl

[21] Economou A., Tsoubelis D., “Multiple-soliton solutions of Einstein's equations”, J. Math. Phys., 30 (1989), 1562–1569 | DOI | MR | Zbl

[22] Elvang H., Figueras P., “Black saturn”, J. High Energy Phys., 2007:5 (2007), 050, 48 pp., arXiv: hep-th/0701035 | DOI | MR

[23] Elvang H., Rodriguez M. J., “Bicycling black rings”, J. High Energy Phys., 2008:4 (2008), 045, 30 pp., arXiv: 0712.2425 | DOI | MR | Zbl

[24] Emparan R., Reall H. S., “A rotating black ring solution in five dimensions”, Phys. Rev. Lett., 88 (2002), 101101, 4 pp., arXiv: hep-th/0110260 | DOI | MR

[25] Emparan R., Reall H. S., Black holes in higher dimensions, Living Rev. Relativ., 11, no. 6, 2008, 87 pp., arXiv: 0801.3471 | Zbl

[26] Emparan R., Reall H. S., “Black rings”, Classical Quantum Gravity, 23 (2006), R169–R197, arXiv: hep-th/0608012 | DOI | MR | Zbl

[27] Emparan R., Reall H. S., “Generalized Weyl solutions”, Phys. Rev. D, 65 (2002), 084025, 26 pp., arXiv: hep-th/0110258 | DOI | MR

[28] Evslin J., Krishnan C., “The black di-ring: an inverse scattering construction”, Classical Quantum Gravity, 26 (2009), 125018, 13 pp., arXiv: 0706.1231 | DOI | MR | Zbl

[29] Figueras P., “A black ring with a rotating 2-sphere”, J. High Energy Phys., 2005:7 (2005), 039, 9 pp., arXiv: hep-th/0505244 | DOI | MR

[30] Figueras P., Jamsin E., Rocha J. V., Virmani A., “Integrability of five-dimensional minimal supergravity and charged rotating black holes”, Classical Quantum Gravity, 27 (2010), 135011, 37 pp., arXiv: 0912.3199 | DOI | MR | Zbl

[31] Frölicher A., Nijenhuis A., “Theory of vector-valued differential forms. I: Derivations in the graded ring of differential forms”, Proc. Koninkl. Ned. Acad. Wetensch. Ser. A, 59 (1956), 338–359 | MR

[32] Frolov V. P., Goswami R., “Surface geometry of 5D black holes and black rings”, Phys. Rev. D, 75 (2007), 124001, 11 pp., arXiv: gr-qc/0612033 | DOI | MR

[33] Gauntlett J. P., Gutowski J. B., “Concentric black rings”, Phys. Rev. D, 71 (2005), 025013, 7 pp., arXiv: hep-th/0408010 | DOI | MR

[34] Griffiths J. B., Colliding plane waves in general relativity, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York | MR

[35] Gu C., Hu H., Zhou Z., Darboux transformations in integrable systems. Theory and their applications to geometry, Mathematical Physics Studies, 26, Springer, Dordrecht, 2005 | MR

[36] Harmark T., “Stationary and axisymmetric solutions of higher-dimensional general relativity”, Phys. Rev. D, 70 (2004), 124002, 25 pp., arXiv: hep-th/0408141 | DOI | MR

[37] Hartwig R. E., “Resultants and the solution of $AX-XB=-C$”, SIAM J. Appl. Math., 23 (1972), 104–117 | DOI | MR | Zbl

[38] Hearon J. Z., “Nonsingular solutions of $TA-BT=C$”, Linear Algebra Appl., 16 (1977), 57–63 | DOI | MR | Zbl

[39] Herdeiro C., Rebelo C., Zilhão M., Costa M., “A double Myers–Perry black hole in five dimensions”, J. High Energy Phys., 2008:7 (2008), 009, 24 pp., arXiv: 0805.1206 | DOI | MR

[40] Hollands S., Yazadjiev S., “Uniqueness theorem for 5-dimensional black holes with two axial Killing fields”, Comm. Math. Phys., 283 (2008), 749–768, arXiv: 0707.2775 | DOI | MR | Zbl

[41] Hong K., Teo E., “A new form of the $C$-metric”, Classical Quantum Gravity, 20 (2003), 3269–3277, arXiv: gr-qc/0305089 | DOI | MR | Zbl

[42] Horowitz G. (ed.), Black holes in higher dimensions, Cambridge University Press, Cambridge, 2012

[43] Hoskisson J., Explorations of four and five dimensional black hole spacetimes, Ph. D. thesis, Durham University, 2009 http://etheses.dur.ac.uk/2115/

[44] Hu Q., Cheng D., “The polynomial solution to the Sylvester matrix equation”, Appl. Math. Lett., 19 (2006), 859–864 | DOI | MR | Zbl

[45] Iguchi H., Izumi K., Mishima T., “Systematic solution-generation of five-dimensional black holes”, Progr. Theoret. Phys. Suppl., 189 (2011), 93–125, arXiv: 1106.0387 | DOI

[46] Iguchi H., Mishima T., “Solitonic generation of vacuum solutions in five-dimensional general relativity”, Phys. Rev. D, 74 (2006), 024029, 17 pp., arXiv: hep-th/0605090 | DOI | MR

[47] Izumi K., “Orthogonal black di-ring solution”, Progr. Theoret. Phys., 119 (2008), 757–774, arXiv: 0712.0902 | DOI

[48] Klein C., Richter O., Ernst equation and Riemann surfaces. Analytical and numerical methods, Lecture Notes in Physics, 685, Springer-Verlag, Berlin, 2005 | MR | Zbl

[49] Kodama H., Hikida W., “Global structure of the Zipoy–Voorhees–Weyl spacetime and the $\delta=2$ Tomimatsu–Sato spacetime”, Classical Quantum Gravity, 20 (2003), 5121–5140, arXiv: gr-qc/0304064 | DOI | MR | Zbl

[50] Kramer D., Neugebauer G., “The superposition of two Kerr solutions”, Phys. Lett. A, 75 (1980), 259–261 | DOI | MR

[51] Lorenzoni P., “Flat bidifferential ideals and semi-Hamiltonian PDEs”, J. Phys. A: Math. Gen., 39 (2006), 13701–13715, arXiv: nlin.SI/0604053 | DOI | MR | Zbl

[52] Lorenzoni P., Magri F., “A cohomological construction of integrable hierarchies of hydrodynamic type”, Int. Math. Res. Not., 2005:34 (2005), 2087–2100, arXiv: nlin.SI/0504064 | DOI | MR | Zbl

[53] Marchenko V. A., Nonlinear equations and operator algebras, Mathematics and its Applications (Soviet Series), 17, D. Reidel Publishing Co., Dordrecht, 1988 | DOI | MR | Zbl

[54] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991 | DOI | MR

[55] Mishima T., Iguchi H., “New axisymmetric stationary solutions of five-dimensional vacuum Einstein equations with asymptotic flatness”, Phys. Rev. D, 73 (2006), 044030, 6 pp., arXiv: hep-th/0504018 | DOI | MR

[56] Myers R. C., “Myers–Perry black holes”, Black Holes in Higher Dimensions, ed. G. Horowitz, Cambridge University Press, Cambridge, 2012, 101–133, arXiv: 1111.1903 | DOI | Zbl

[57] Myers R. C., Perry M. J., “Black holes in higher-dimensional space-times”, Ann. Physics, 172 (1986), 304–347 | DOI | MR | Zbl

[58] Nakamura Y., “Symmetries of stationary axially symmetric vacuum Einstein equations and the new family of exact solutions”, J. Math. Phys., 24 (1983), 606–609 | DOI | MR | Zbl

[59] Nimmo J. J. C., Gilson C., Ohta Y., “Applications of Darboux transformations to the self-dual Yang–Mills equations”, Theoret. and Math. Phys., 122 (2000), 239–246 | DOI | MR

[60] Pomeransky A. A., “Complete integrability of higher-dimensional Einstein equations with additional symmetry and rotating black holes”, Phys. Rev. D, 73 (2006), 044004, 5 pp., arXiv: hep-th/0507250 | DOI | MR

[61] Pomeransky A. A., Sen'kov R. A., Black ring with two angular momenta, arXiv: hep-th/0612005 | Zbl

[62] Rogers C., Schief W. K., Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002 | MR

[63] Sakhnovich A. L., “Dressing procedure for solutions of nonlinear equations and the method of operator identities”, Inverse Problems, 10 (1994), 699–710 | DOI | MR | Zbl

[64] Sakhnovich A. L., “Generalized Bäcklund–Darboux transformation: spectral properties and nonlinear equations”, J. Math. Anal. Appl., 262 (2001), 274–306 | DOI | MR | Zbl

[65] Sakhnovich A. L., “On the GBDT version of the Bäcklund–Darboux transformation and its applications to linear and nonlinear equations and Weyl theory”, Math. Model. Nat. Phenom., 5 (2010), 340–389, arXiv: 0909.1537 | DOI | MR | Zbl

[66] Sakhnovich L. A., “Problems of factorization and operator identities”, Russ. Math. Surv., 41:1 (1986), 1–64 | DOI | MR | Zbl

[67] Sparano G., Vilasi G., Vinogradov A. M., “Vacuum Einstein metrics with bidimensional Killing leaves. I: Local aspects”, Differential Geom. Appl., 16 (2002), 95–120, arXiv: gr-qc/0301020 | DOI | MR | Zbl

[68] Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions of Einstein's field equations, Cambridge Monographs on Mathematical Physics, 2nd ed., Cambridge University Press, Cambridge, 2003 | MR

[69] Szybka S. J., “Stable causality of Black Saturns”, J. High Energy Phys., 2011:5 (2011), 052, 9 pp., arXiv: 1102.3942 | DOI | MR

[70] Tan H. S., Teo E., “Multi-black-hole solutions in five dimensions”, Phys. Rev. D, 68 (2003), 044021, 11 pp., arXiv: hep-th/0306044 | DOI | MR | Zbl

[71] Tangherlini F. R., “Schwarzschild field in $n$ dimensions and the dimensionality of space problem”, Nuovo Cimento, 27 (1963), 636–651 | DOI | MR | Zbl

[72] Tomimatsu A., Sato H., “New exact solution for the gravitational field of a spinning mass”, Phys. Rev. Lett., 29 (1972), 1344–1345 | DOI

[73] Tomizawa S., Ishihara H., Exact solutions of higher dimensional black holes, arXiv: 1104.1468

[74] Tomizawa S., Morisawa Y., Yasui Y., “Vacuum solutions of five dimensional Einstein equations generated by inverse scattering method”, Phys. Rev. D, 73 (2006), 064009, 8 pp., arXiv: hep-th/0512252 | DOI | MR

[75] Tomizawa S., Nozawa M., “Vacuum solutions of five dimensional Einstein equations generated by inverse scattering method. II: Production of the black ring solution”, Phys. Rev. D, 73 (2006), 124034, 10 pp., arXiv: hep-th/0604067 | DOI | MR

[76] Tomizawa S., Uchida Y., Shiromizu M., “Twist of stationary black hole or ring in five dimensions”, Phys. Rev. D, 70 (2004), 064020, 5 pp., arXiv: gr-qc/0405134 | DOI | MR

[77] Verdaguer E., “Soliton solutions in spacetime with two spacelike Killing fields”, Phys. Rep., 229 (1993), 1–80 | DOI | MR | Zbl

[78] Yazadjiev S. S., “5D Einstein–Maxwell solitons and concentric rotating dipole black rings”, Phys. Rev. D, 78 (2008), 064032, 11 pp., arXiv: 0805.1600 | DOI | MR

[79] Yazadjiev S. S., “Black saturn with a dipole ring”, Phys. Rev. D, 76 (2007), 064011, 8 pp., arXiv: 0705.1840 | DOI

[80] Yazadjiev S. S., “Completely integrable sector in 5D Einstein–Maxwell gravity and derivation of the dipole black ring solutions”, Phys. Rev. D, 73 (2006), 104007, 7 pp., arXiv: hep-th/0602116 | DOI | MR