Dirac Operators on Noncommutative Curved Spacetimes
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the notion of a Dirac operator in the framework of twist-deformed noncommutative geometry. We provide a number of well-motivated candidate constructions and propose a minimal set of axioms that a noncommutative Dirac operator should satisfy. These criteria turn out to be restrictive, but they do not fix a unique construction: two of our operators generally satisfy the axioms, and we provide an explicit example where they are inequivalent. For highly symmetric spacetimes with Drinfeld twists constructed from sufficiently many Killing vector fields, all of our operators coincide. For general noncommutative curved spacetimes we find that demanding formal self-adjointness as an additional condition singles out a preferred choice among our candidates. Based on this noncommutative Dirac operator we construct a quantum field theory of Dirac fields. In the last part we study noncommutative Dirac operators on deformed Minkowski and AdS spacetimes as explicit examples.
Keywords: Dirac operators; Dirac fields; Drinfeld twists; deformation quantization; noncommutative quantum field theory; quantum field theory on curved spacetimes.
@article{SIGMA_2013_9_a79,
     author = {Alexander Schenkel and Christoph F. Uhlemann},
     title = {Dirac {Operators} on {Noncommutative} {Curved} {Spacetimes}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a79/}
}
TY  - JOUR
AU  - Alexander Schenkel
AU  - Christoph F. Uhlemann
TI  - Dirac Operators on Noncommutative Curved Spacetimes
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a79/
LA  - en
ID  - SIGMA_2013_9_a79
ER  - 
%0 Journal Article
%A Alexander Schenkel
%A Christoph F. Uhlemann
%T Dirac Operators on Noncommutative Curved Spacetimes
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a79/
%G en
%F SIGMA_2013_9_a79
Alexander Schenkel; Christoph F. Uhlemann. Dirac Operators on Noncommutative Curved Spacetimes. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a79/

[1] Aschieri P., Castellani L., “Noncommutative {$D=4$} gravity coupled to fermions”, J. High Energy Phys., 2009:6 (2009), 086, 18 pp., arXiv: 0902.3817 | DOI | MR

[2] Aschieri P., Castellani L., “Noncommutative gravity solutions”, J. Geom. Phys., 60 (2010), 375–393, arXiv: 0906.2774 | DOI | MR | Zbl

[3] Aschieri P., Castellani L., “Noncommutative gravity coupled to fermions: second order expansion via {S}eiberg–{W}itten map”, J. High Energy Phys., 2012:7 (2012), 184, 27 pp., arXiv: 1111.4822 | DOI | MR

[4] Aschieri P., Dimitrijević M., Meyer F., Wess J., “Noncommutative geometry and gravity”, Classical Quantum Gravity, 23 (2006), 1883–1911, arXiv: hep-th/0510059 | DOI | MR | Zbl

[5] Aschieri P., Lizzi F., Vitale P., “Twisting all the way: from classical mechanics to quantum fields”, Phys. Rev. D, 77 (2008), 025037, 16 pp., arXiv: 0708.3002 | DOI | MR

[6] Aschieri P., Schenkel A., “Noncommutative connections on bimodules and Drinfeld twist deformation”, arXiv: 1210.0241

[7] Balachandran A. P., Pinzul A., Qureshi B. A., “Twisted {P}oincaré invariant quantum field theories”, Phys. Rev. D, 77 (2008), 025021, 9 pp., arXiv: 0708.1779 | DOI | MR

[8] Bär C., Green-hyperbolic operators on globally hyperbolic spacetimes, arXiv: 1310.0738

[9] Bär C., Ginoux N., “Classical and quantum fields on Lorentzian manifolds”, Global Differential Geometry, Springer Proceedings in Mathematics, 17, eds. C. Bär, J. Lohkamp, M. Schwarz, Springer, Berlin, 2012, 359–400, arXiv: 1104.1158 | DOI | Zbl

[10] Borowiec A., Pachol A., “$\kappa$-Minkowski spacetime as the result of Jordanian twist deformation”, Phys. Rev. D, 79 (2009), 045012, 11 pp., arXiv: 0812.0576 | DOI

[11] Breitenlohner P., Freedman D. Z., “Stability in gauged extended supergravity”, Ann. Physics, 144 (1982), 249–281 | DOI | MR | Zbl

[12] Bu J.-G., Kim H.-C., Lee Y., Vac C. H., Yee J. H., “$\kappa$-deformed spacetime from twist”, Phys. Lett. B, 665 (2008), 95–99, arXiv: hep-th/0611175 | DOI | MR

[13] Connes A., Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994 | MR | Zbl

[14] Connes A., Landi G., “Noncommutative manifolds, the instanton algebra and isospectral deformations”, Comm. Math. Phys., 221 (2001), 141–159, arXiv: math.QA/0011194 | DOI | MR | Zbl

[15] D'Andrea F., “Spectral geometry of {$\kappa$}-{M}inkowski space”, J. Math. Phys., 47 (2006), 062105, 19 pp., arXiv: hep-th/0503012 | DOI | MR

[16] Dimitrijević M., Jonke L., “A twisted look on kappa-{M}inkowski: {U}(1) gauge theory”, J. High Energy Phys., 2011:12 (2011), 080, 23 pp., arXiv: 1107.3475 | DOI | MR

[17] Doplicher S., Fredenhagen K., Roberts J. E., “Spacetime quantization induced by classical gravity”, Phys. Lett. B, 331 (1994), 39–44 | DOI | MR

[18] Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of spacetime at the {P}lanck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | Zbl

[19] Fiore G., Wess J., “Full twisted {P}oincaré symmetry and quantum field theory on {M}oyal–{W}eyl spaces”, Phys. Rev. D, 75 (2007), 105022, 13 pp., arXiv: hep-th/0701078 | DOI | MR

[20] Govindarajan T. R., Gupta K. S., Harikumar E., Meljanac S., Meljanac D., “Twisted statistics in {$\kappa$}-{M}inkowski spacetime”, Phys. Rev. D, 77 (2008), 105010, 6 pp., arXiv: 0802.1576 | DOI | MR

[21] Iochum B., Masson T., Schücker T., Sitarz A., “Compact {$\kappa$}-deformation and spectral triples”, Rep. Math. Phys., 68 (2011), 37–64, arXiv: 1004.4190 | DOI | MR | Zbl

[22] Jurić T., Meljanac S., Štrajn R., “Differential forms and $\kappa$-Minkowski spacetime from extended twist”, Eur. Phys. J. C, 73 (2013), 2472–2480, arXiv: 1211.6612 | DOI

[23] Kim H.-C., Lee Y., Rim C., Yee J. H., “Differential structure on the {$\kappa$}-{M}inkowski spacetime from twist”, Phys. Lett. B, 671 (2009), 398–401, arXiv: 0808.2866 | DOI | MR

[24] Meljanac S., Samsarov A., Štrajn R., “$\kappa$-deformation of phase space; generalized Poincaré algebras and $R$-matrix”, J. High Energy Phys., 2012:8 (2012), 127, 16 pp., arXiv: 1204.4324 | DOI | MR

[25] Mühlhoff R., “Cauchy problem and {G}reen's functions for first order differential operators and algebraic quantization”, J. Math. Phys., 52 (2011), 022303, 7 pp., arXiv: 1001.4091 | DOI | MR

[26] Ohl T., Schenkel A., “Cosmological and black hole spacetimes in twisted noncommutative gravity”, J. High Energy Phys., 2009:10 (2009), 052, 12 pp., arXiv: 0906.2730 | DOI | MR

[27] Ohl T., Schenkel A., “Algebraic approach to quantum field theory on a class of noncommutative curved spacetimes”, Gen. Relativity Gravitation, 42 (2010), 2785–2798, arXiv: 0912.2252 | DOI | MR | Zbl

[28] Ohl T., Schenkel A., Uhlemann C. F., “Spacetime noncommutativity in models with warped extradimensions”, J. High Energy Phys., 2010:7 (2010), 029, 16 pp., arXiv: 1002.2884 | DOI | MR

[29] Schenkel A., Noncommutative gravity and quantum field theory on noncommutative curved spacetimes, Ph. D. thesis, University of Würzburg, 2011 , arXiv: http://opus.bibliothek.uni-wuerzburg.de/volltexte/2011/6582/1210.1115

[30] Schenkel A., “Q{FT} on homothetic {K}illing twist deformed curved spacetimes”, Gen. Relativity Gravitation, 43 (2011), 2605–2630, arXiv: 1009.1090 | DOI | MR | Zbl

[31] Schenkel A., Uhlemann C. F., “Field theory on curved noncommutative spacetimes”, SIGMA, 6 (2010), 061, 19 pp., arXiv: 1003.3190 | DOI | MR | Zbl

[32] Schenkel A., Uhlemann C. F., “High energy improved scalar quantum field theory from noncommutative geometry without {UV}/{IR}-mixing”, Phys. Lett. B, 694 (2010), 258–260, arXiv: 1002.4191 | DOI | MR

[33] Schupp P., Solodukhin S., Exact black hole solutions in noncommutative gravity, arXiv: 0906.2724

[34] Taylor M. E., Partial differential equations, v. I, Applied Mathematical Sciences, 115, Basic theory, Springer-Verlag, New York, 1996 | DOI | MR | Zbl

[35] Zahn J., “Remarks on twisted noncommutative quantum field theory”, Phys. Rev. D, 73 (2006), 105005, 6 pp., arXiv: hep-th/0603231 | DOI | MR

[36] Zuckerman G. J., “Action principles and global geometry”, Mathematical Aspects of String Theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys., 1, World Sci. Publishing, Singapore, 1987, 259–284 | MR