A Centerless Virasoro Algebra of Master Symmetries for the Ablowitz–Ladik Hierarchy
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the (semi-infinite) Ablowitz–Ladik (AL) hierarchy admits a centerless Virasoro algebra of master symmetries in the sense of Fuchssteiner [Progr. Theoret. Phys. 70 (1983), 1508–1522]. An explicit expression for these symmetries is given in terms of a slight generalization of the Cantero, Moral and Velázquez (CMV) matrices [Linear Algebra Appl. 362 (2003), 29–56] and their action on the tau-functions of the hierarchy is described. The use of the CMV matrices turns out to be crucial for obtaining a Lax pair representation of the master symmetries. The AL hierarchy seems to be the first example of an integrable hierarchy which admits a full centerless Virasoro algebra of master symmetries, in contrast with the Toda lattice and Korteweg–de Vries hierarchies which possess only “half of” a Virasoro algebra of master symmetries, as explained in Adler and van Moerbeke [Duke Math. J. 80 (1995), 863–911], Damianou [Lett. Math. Phys. 20 (1990), 101–112] and Magri and Zubelli [Comm. Math. Phys. 141 (1991), 329–351].
Keywords: Ablowitz–Ladik hierarchy; master symmetries; Virasoro algebra.
@article{SIGMA_2013_9_a78,
     author = {Luc Haine and Didier Vanderstichelen},
     title = {A {Centerless} {Virasoro} {Algebra} of {Master} {Symmetries} for the {Ablowitz{\textendash}Ladik} {Hierarchy}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a78/}
}
TY  - JOUR
AU  - Luc Haine
AU  - Didier Vanderstichelen
TI  - A Centerless Virasoro Algebra of Master Symmetries for the Ablowitz–Ladik Hierarchy
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a78/
LA  - en
ID  - SIGMA_2013_9_a78
ER  - 
%0 Journal Article
%A Luc Haine
%A Didier Vanderstichelen
%T A Centerless Virasoro Algebra of Master Symmetries for the Ablowitz–Ladik Hierarchy
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a78/
%G en
%F SIGMA_2013_9_a78
Luc Haine; Didier Vanderstichelen. A Centerless Virasoro Algebra of Master Symmetries for the Ablowitz–Ladik Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a78/

[1] Ablowitz M. J., Ladik J. F., “Nonlinear differential-difference equations”, J. Math. Phys., 16 (1975), 598–603 | DOI | MR | Zbl

[2] Ablowitz M. J., Ladik J. F., “Nonlinear differential-difference equations and {F}ourier analysis”, J. Math. Phys., 17 (1976), 1011–1018 | DOI | MR | Zbl

[3] Adler M., Shiota T., van Moerbeke P., “Random matrices, {V}irasoro algebras, and noncommutative {KP}”, Duke Math. J., 94 (1998), 379–431, arXiv: solv-int/9812006 | DOI | MR | Zbl

[4] Adler M., van Moerbeke P., “Matrix integrals, {T}oda symmetries, {V}irasoro constraints, and orthogonal polynomials”, Duke Math. J., 80 (1995), 863–911, arXiv: solv-int/9706010 | DOI | MR | Zbl

[5] Adler M., van Moerbeke P., “Integrals over classical groups, random permutations, {T}oda and {T}oeplitz lattices”, Comm. Pure Appl. Math., 54 (2001), 153–205, arXiv: math.CO/9912143 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[6] Adler M., van Moerbeke P., “Recursion relations for unitary integrals, combinatorics and the {T}oeplitz lattice”, Comm. Math. Phys., 237 (2003), 397–440, arXiv: math-ph/0201063 | MR | Zbl

[7] Aldous D., Diaconis P., “Longest increasing subsequences: from patience sorting to the {B}aik–{D}eift–{J}ohansson theorem”, Bull. Amer. Math. Soc., 36 (1999), 413–432 | DOI | MR | Zbl

[8] Bowick M. J., Morozov A., Shevitz D., “Reduced unitary matrix models and the hierarchy of {$\tau$}-functions”, Nuclear Phys. B, 354 (1991), 496–530 | DOI | MR

[9] Cafasso M., “Matrix biorthogonal polynomials on the unit circle and non-abelian {A}blowitz–{L}adik hierarchy”, J. Phys. A: Math. Theor., 42 (2009), 365211, 20 pp., arXiv: 0804.3572 | DOI | MR | Zbl

[10] Cantero M. J., Moral L., Velázquez L., “Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle”, Linear Algebra Appl., 362 (2003), 29–56, arXiv: math.CA/0204300 | DOI | MR | Zbl

[11] Cruz-Barroso R., González-Vera P., “A {C}hristoffel–{D}arboux formula and a {F}avard's theorem for orthogonal {L}aurent polynomials on the unit circle”, J. Comput. Appl. Math., 179 (2005), 157–173 | DOI | MR | Zbl

[12] Damianou P. A., “Master symmetries and {$R$}-matrices for the {T}oda lattice”, Lett. Math. Phys., 20 (1990), 101–112 | DOI | MR | Zbl

[13] Date E., Kashiwara M., Jimbo M., Miwa T., “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory ({K}yoto, 1981), World Sci. Publishing, Singapore, 1983, 39–119 | MR

[14] Dijkgraaf R., Verlinde H., Verlinde E., “Loop equations and {V}irasoro constraints in nonperturbative two-dimensional quantum gravity”, Nuclear Phys. B, 348 (1991), 435–456 | DOI | MR

[15] Faybusovich L., Gekhtman M., “Poisson brackets on rational functions and multi-{H}amiltonian structure for integrable lattices”, Phys. Lett. A, 272 (2000), 236–244, arXiv: nlin.SI/0006045 | DOI | MR | Zbl

[16] Fernandes R. L., “On the master symmetries and bi-{H}amiltonian structure of the {T}oda lattice”, J. Phys. A: Math. Gen., 26 (1993), 3797–3803 | DOI | MR | Zbl

[17] Forrester P. J., Witte N. S., “Bi-orthogonal polynomials on the unit circle, regular semi-classical weights and integrable systems”, Constr. Approx., 24 (2006), 201–237, arXiv: math.CA/0412394 | DOI | MR | Zbl

[18] Fuchssteiner B., “Mastersymmetries, higher order time-dependent symmetries and conserved densities of nonlinear evolution equations”, Progr. Theoret. Phys., 70 (1983), 1508–1522 | DOI | MR | Zbl

[19] Fukuma M., Kawai H., Nakayama R., “Continuum {S}chwinger–{D}yson equations and universal structures in two-dimensional quantum gravity”, Internat. J. Modern Phys. A, 6 (1991), 1385–1406 | DOI | MR

[20] Gesztesy F., Holden H., Michor J., Teschl G., “Local conservation laws and the {H}amiltonian formalism for the {A}blowitz–{L}adik hierarchy”, Stud. Appl. Math., 120 (2008), 361–423, arXiv: 0711.1644 | DOI | MR | Zbl

[21] Grünbaum F. A., Haine L., “A theorem of Bochner, revisited”, Algebraic Aspects of Integrable Systems, Progr. Nonlinear Differential Equations Appl., 26, Birkhäuser Boston, Boston, MA, 1997, 143–172

[22] Haine L., Horozov E., “Toda orbits of {L}aguerre polynomials and representations of the {V}irasoro algebra”, Bull. Sci. Math., 117 (1993), 485–518 | MR | Zbl

[23] Haine L., Semengue J. P., “The {J}acobi polynomial ensemble and the {P}ainlevé {VI} equation”, J. Math. Phys., 40 (1999), 2117–2134 | DOI | MR | Zbl

[24] Haine L., Vanderstichelen D., “A centerless representation of the {V}irasoro algebra associated with the unitary circular ensemble”, J. Comput. Appl. Math., 236 (2011), 19–27, arXiv: 1001.4244 | DOI | MR | Zbl

[25] Kac V., Schwarz A., “Geometric interpretation of the partition function of {$2$}{D} gravity”, Phys. Lett. B, 257 (1991), 329–334 | DOI | MR

[26] Kac V. G., Raina A. K., Bombay lectures on highest weight representations of infinite-dimensional {L}ie algebras, Advanced Series in Mathematical Physics, 2, World Scientific Publishing Co. Inc., Teaneck, NJ, 1987 | MR | Zbl

[27] Kharchev S., Mironov A., “Integrable structures of unitary matrix models”, Internat. J. Modern Phys. A, 7 (1992), 4803–4824 | DOI | MR | Zbl

[28] Kharchev S., Mironov A., Zhedanov A., “Faces of relativistic {T}oda chain”, Internat. J. Modern Phys. A, 12 (1997), 2675–2724, arXiv: hep-th/9606144 | DOI | MR | Zbl

[29] Kharchev S., Mironov A., Zhedanov A., “Different aspects of relativistic {T}oda chain”, Symmetries and Integrability of Difference Equations ({C}anterbury, 1996), London Math. Soc. Lecture Note Ser., 255, eds. P. A. Clarkson, F. W. Nijhoff, Cambridge Univ. Press, Cambridge, 1999, 23–40, arXiv: hep-th/9612094 | DOI | MR | Zbl

[30] Martinec E. J., “On the origin of integrability in matrix models”, Comm. Math. Phys., 138 (1991), 437–449 | DOI | MR | Zbl

[31] Mironov A., Morozov A., “On the origin of {V}irasoro constraints in matrix models: {L}agrangian approach”, Phys. Lett. B, 252 (1990), 47–52 | DOI | MR

[32] Nenciu I., “Lax pairs for the {A}blowitz–{L}adik system via orthogonal polynomials on the unit circle”, Int. Math. Res. Not., 2005 (2005), 647–686, arXiv: math-ph/0412047 | DOI | MR | Zbl

[33] Rains E. M., “Increasing subsequences and the classical groups”, Electron. J. Combin., 5 (1998), R12, 9 pp. | MR | Zbl

[34] Simon B., Orthogonal polynomials on the unit circle, v. 1, American Mathematical Society Colloquium Publications, 54, Classical theory, American Mathematical Society, Providence, RI, 2005 | MR | Zbl

[35] Simon B., Orthogonal polynomials on the unit circle, v. 2, American Mathematical Society Colloquium Publications, 54, Spectral theory, American Mathematical Society, Providence, RI, 2005 | MR | Zbl

[36] Tracy C. A., Widom H., “Fredholm determinants, differential equations and matrix models”, Comm. Math. Phys., 163 (1994), 33–72, arXiv: hep-th/9306042 | DOI | MR | Zbl

[37] Ueno K., Takasaki K., “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations ({T}okyo, 1982), Adv. Stud. Pure Math., 4, North-Holland, Amsterdam, 1984, 1–95 | MR

[38] Vanderstichelen D., Virasoro symmetries for the Ablowitz–Ladik hierarchy and non-intersecting Brownian motion models, Ph. D. Thesis, Université Catholique de Louvain, 2011

[39] Zubelli J. P., Magri F., “Differential equations in the spectral parameter, {D}arboux transformations and a hierarchy of master symmetries for {K}d{V}”, Comm. Math. Phys., 141 (1991), 329–351 | DOI | MR | Zbl