@article{SIGMA_2013_9_a77,
author = {Maxim Nazarov and Evgeny Sklyanin},
title = {Integrable {Hierarchy} of the {Quantum} {Benjamin{\textendash}Ono} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a77/}
}
Maxim Nazarov; Evgeny Sklyanin. Integrable Hierarchy of the Quantum Benjamin–Ono Equation. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a77/
[1] Ablowitz M. J., Fokas A. S., Satsuma J., Segur H., “On the periodic intermediate long wave equation”, J. Phys. A: Math. Gen., 15 (1982), 781–786 | DOI | MR | Zbl
[2] Awata H., Matsuo Y., Odake S., Shiraishi J., “Collective field theory, {C}alogero–{S}utherland model and generalized matrix models”, Phys. Lett. B, 347 (1995), 49–55, arXiv: hep-th/9411053 | DOI | MR | Zbl
[3] Benjamin T. B., “Internal waves of permanent form in fluids of great depth”, J. Fluid Mech., 29 (1967), 559–592 | DOI | Zbl
[4] Cai W., Jing N., “Applications of a {L}aplace–{B}eltrami operator for {J}ack polynomials”, European J. Combin., 33 (2012), 556–571, arXiv: 1101.5544 | DOI | MR | Zbl
[5] Kaup D. J., Lakoba T. I., Matsuno Y., “Complete integrability of the {B}enjamin–{O}no equation by means of action-angle variables”, Phys. Lett. A, 238 (1998), 123–133 | DOI | MR | Zbl
[6] Kaup D. J., Matsuno Y., “The inverse scattering transform for the {B}enjamin–{O}no equation”, Stud. Appl. Math., 101 (1998), 73–98 | DOI | MR | Zbl
[7] Krichever I., Vaninsky K. L., “The periodic and open {T}oda lattice”, Mirror Symmetry ({M}ontreal, {QC}, 2000), v. IV, AMS/IP Stud. Adv. Math., 33, Amer. Math. Soc., Providence, RI, 2002, 139–158, arXiv: hep-th/0010184 | MR | Zbl
[8] Macdonald I. G., Symmetric functions and {H}all polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, 1995 | MR | Zbl
[9] Nazarov M. L., Sklyanin E. K., “Sekiguchi–{D}ebiard operators at infinity”, Comm. Math. Phys., 324 (2013), 831–849, arXiv: 1212.2781 | DOI | MR | Zbl
[10] Nazarov M. L., Sklyanin E. K., “Macdonald operators at infinity”, J. Algebr. Comb., 2013, arXiv: 1212.2960 | DOI | MR
[11] Okounkov A., Pandharipande R., “Quantum cohomology of the {H}ilbert scheme of points in the plane”, Invent. Math., 179 (2010), 523–557, arXiv: math.AG/0411210 | DOI | MR | Zbl
[12] Ono H., “Algebraic solitary waves in stratified fluids”, J. Phys. Soc. Japan, 39 (1975), 1082–1091 | DOI | MR
[13] Polychronakos A. P., “Waves and solitons in the continuum limit of the {C}alogero–{S}utherland model”, Phys. Rev. Lett., 74 (1995), 5153–5157, arXiv: hep-th/9411054 | DOI | MR | Zbl
[14] Schiffmann O., Vasserot E., “Cherednik algebras, $W$-algebras and the equivariant cohomology of the moduli space of instantons on $\mathbb{A}^2$”, Publ. Math. IHÉS, 118 (2013), 213–342, arXiv: 1202.2756 | DOI | Zbl
[15] Shiraishi J., “A family of integral transformations and basic hypergeometric series”, Comm. Math. Phys., 263 (2006), 439–460 | DOI | MR | Zbl
[16] Sklyanin E. K., “Bispectrality for the quantum open Toda chain”, J. Phys. A: Math. Theor., 46 (2013), 382001, 9 pp., arXiv: 1306.0454 | DOI | Zbl
[17] Stembridge J., Maple packages for symmetric functions, posets, root systems, and finite Coxeter groups, http://www.math.lsa.umich.edu/ ̃ jrs/maple.html#SF
[18] Takasaki K., “Integrable systems whose spectral curves are the graph of a function”, Superintegrability in Classical and Quantum Systems, CRM Proc. Lecture Notes, 37, Amer. Math. Soc., Providence, RI, 2004, arXiv: nlin.SI/0211021 | MR | Zbl
[19] Ujino H., Wadati M., Hikami K., “The quantum {C}alogero–{M}oser model: algebraic structures”, J. Phys. Soc. Japan, 62 (1993), 3035–3043 | DOI | MR | Zbl
[20] Vaninsky K. L., “On explicit parametrisation of spectral curves for {M}oser–{C}alogero particles and its applications”, Int. Math. Res. Not., 1999 (1999), 509–529, arXiv: solv-int/9808018 | DOI | MR | Zbl