@article{SIGMA_2013_9_a76,
author = {Jan Felipe Van Diejen and Erdal Emsiz},
title = {Boundary {Interactions} for the {Semi-Infinite} $q${-Boson} {System} and {Hyperoctahedral} {Hall{\textendash}Littlewood} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a76/}
}
TY - JOUR AU - Jan Felipe Van Diejen AU - Erdal Emsiz TI - Boundary Interactions for the Semi-Infinite $q$-Boson System and Hyperoctahedral Hall–Littlewood Polynomials JO - Symmetry, integrability and geometry: methods and applications PY - 2013 VL - 9 UR - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a76/ LA - en ID - SIGMA_2013_9_a76 ER -
%0 Journal Article %A Jan Felipe Van Diejen %A Erdal Emsiz %T Boundary Interactions for the Semi-Infinite $q$-Boson System and Hyperoctahedral Hall–Littlewood Polynomials %J Symmetry, integrability and geometry: methods and applications %D 2013 %V 9 %U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a76/ %G en %F SIGMA_2013_9_a76
Jan Felipe Van Diejen; Erdal Emsiz. Boundary Interactions for the Semi-Infinite $q$-Boson System and Hyperoctahedral Hall–Littlewood Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a76/
[1] Bogoliubov N. M., Izergin A. G., Kitanine N. A., “Correlation functions for astrongly correlated boson system”, Nuclear Phys. B, 516 (1998), 501–528, arXiv: solv-int/9710002 | DOI | MR | Zbl
[2] Borodin A., Corwin I., Petrov L., Sasamoto T., Spectral theory for the $q$-boson particle system, arXiv: 1308.3475
[3] van Diejen J. F., “Properties of some families of hypergeometric orthogonal polynomials in several variables”, Trans. Amer. Math. Soc., 351 (1999), 233–270, arXiv: q-alg/9604004 | DOI | MR | Zbl
[4] van Diejen J. F., Emsiz E., Diagonalization of the infinite $q$-boson system, arXiv: 1308.2237
[5] van Diejen J. F., Emsiz E., “The semi-infinite $q$-boson system with boundary interaction”, Lett. Math. Phys. (to appear) , arXiv: 1308.2242 | DOI
[6] Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997 | MR | Zbl
[7] Koornwinder T. H., “Askey–{W}ilson polynomials for root systems of type {$BC$}”, Hypergeometric Functions on Domains of Positivity, {J}ack Polynomials, and Applications ({T}ampa, {FL}, 1991), Contemp. Math., 138, Amer. Math. Soc., Providence, RI, 1992, 189–204 | DOI | MR | Zbl
[8] Korff C., “Cylindric versions of specialised {M}acdonald functions and a deformed {V}erlinde algebra”, Comm. Math. Phys., 318 (2013), 173–246, arXiv: 1110.6356 | DOI | MR | Zbl
[9] Macdonald I. G., “Orthogonal polynomials associated with root systems”, Sém. Lothar. Combin., 45 (2000), B45a, 40 pp., arXiv: math.QA/0011046 | MR | Zbl
[10] Macdonald I. G., Affine {H}ecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl
[11] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[12] Povolotsky A. M., “On integrability of zero-range chipping models with factorized steady state”, J. Phys. A: Math. Theor., 46 (2013), 465205, 25 pp., arXiv: 1308.3250 | DOI
[13] Sasamoto T., Wadati M., “Exact results for one-dimensional totally asymmetric diffusion models”, J. Phys. A: Math. Gen., 31 (1998), 6057–6071 | DOI | MR | Zbl
[14] Takeyama Y., A discrete analogue of periodic delta Bose gas and affine Hecke algebra, arXiv: 1209.2758
[15] Tsilevich N. V., “The quantum inverse scattering problem method for the {$q$}-boson model and symmetric functions”, Funct. Anal. Appl., 40 (2006), 207–217, arXiv: math-ph/0510073 | DOI | MR | Zbl
[16] Venkateswaran V., Symmetric and nonsymmetric Hall–Littlewood polynomials of type $BC$, arXiv: 1209.2933