Boundary Interactions for the Semi-Infinite $q$-Boson System and Hyperoctahedral Hall–Littlewood Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a semi-infinite $q$-boson system endowed with a four-parameter boundary interaction. The $n$-particle Hamiltonian is diagonalized by generalized Hall–Littlewood polynomials with hyperoctahedral symmetry that arise as a degeneration of the Macdonald–Koornwinder polynomials and were recently studied in detail by Venkateswaran.
Keywords: Hall–Littlewood functions; $q$-bosons; boundary fields; hyperoctahedral symmetry.
@article{SIGMA_2013_9_a76,
     author = {Jan Felipe Van Diejen and Erdal Emsiz},
     title = {Boundary {Interactions} for the {Semi-Infinite} $q${-Boson} {System} and {Hyperoctahedral} {Hall{\textendash}Littlewood} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a76/}
}
TY  - JOUR
AU  - Jan Felipe Van Diejen
AU  - Erdal Emsiz
TI  - Boundary Interactions for the Semi-Infinite $q$-Boson System and Hyperoctahedral Hall–Littlewood Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a76/
LA  - en
ID  - SIGMA_2013_9_a76
ER  - 
%0 Journal Article
%A Jan Felipe Van Diejen
%A Erdal Emsiz
%T Boundary Interactions for the Semi-Infinite $q$-Boson System and Hyperoctahedral Hall–Littlewood Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a76/
%G en
%F SIGMA_2013_9_a76
Jan Felipe Van Diejen; Erdal Emsiz. Boundary Interactions for the Semi-Infinite $q$-Boson System and Hyperoctahedral Hall–Littlewood Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a76/

[1] Bogoliubov N. M., Izergin A. G., Kitanine N. A., “Correlation functions for astrongly correlated boson system”, Nuclear Phys. B, 516 (1998), 501–528, arXiv: solv-int/9710002 | DOI | MR | Zbl

[2] Borodin A., Corwin I., Petrov L., Sasamoto T., Spectral theory for the $q$-boson particle system, arXiv: 1308.3475

[3] van Diejen J. F., “Properties of some families of hypergeometric orthogonal polynomials in several variables”, Trans. Amer. Math. Soc., 351 (1999), 233–270, arXiv: q-alg/9604004 | DOI | MR | Zbl

[4] van Diejen J. F., Emsiz E., Diagonalization of the infinite $q$-boson system, arXiv: 1308.2237

[5] van Diejen J. F., Emsiz E., “The semi-infinite $q$-boson system with boundary interaction”, Lett. Math. Phys. (to appear) , arXiv: 1308.2242 | DOI

[6] Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997 | MR | Zbl

[7] Koornwinder T. H., “Askey–{W}ilson polynomials for root systems of type {$BC$}”, Hypergeometric Functions on Domains of Positivity, {J}ack Polynomials, and Applications ({T}ampa, {FL}, 1991), Contemp. Math., 138, Amer. Math. Soc., Providence, RI, 1992, 189–204 | DOI | MR | Zbl

[8] Korff C., “Cylindric versions of specialised {M}acdonald functions and a deformed {V}erlinde algebra”, Comm. Math. Phys., 318 (2013), 173–246, arXiv: 1110.6356 | DOI | MR | Zbl

[9] Macdonald I. G., “Orthogonal polynomials associated with root systems”, Sém. Lothar. Combin., 45 (2000), B45a, 40 pp., arXiv: math.QA/0011046 | MR | Zbl

[10] Macdonald I. G., Affine {H}ecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl

[11] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[12] Povolotsky A. M., “On integrability of zero-range chipping models with factorized steady state”, J. Phys. A: Math. Theor., 46 (2013), 465205, 25 pp., arXiv: 1308.3250 | DOI

[13] Sasamoto T., Wadati M., “Exact results for one-dimensional totally asymmetric diffusion models”, J. Phys. A: Math. Gen., 31 (1998), 6057–6071 | DOI | MR | Zbl

[14] Takeyama Y., A discrete analogue of periodic delta Bose gas and affine Hecke algebra, arXiv: 1209.2758

[15] Tsilevich N. V., “The quantum inverse scattering problem method for the {$q$}-boson model and symmetric functions”, Funct. Anal. Appl., 40 (2006), 207–217, arXiv: math-ph/0510073 | DOI | MR | Zbl

[16] Venkateswaran V., Symmetric and nonsymmetric Hall–Littlewood polynomials of type $BC$, arXiv: 1209.2933