Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a Hamiltonian for two interacting $\mathfrak{su}(2)$ spins. We use a mean-field analysis and exact Bethe ansatz results to investigate the ground-state properties of the system in the classical limit, defined as the limit of infinite spin (or highest weight). Complementary insights are provided through investigation of the energy gap, ground-state fidelity, and ground-state entanglement, which are numerically computed for particular parameter values. Despite the simplicity of the model, a rich array of ground-state features are uncovered. Finally, we discuss how this model may be seen as an analogue of the exactly solvable $p+ip$ pairing Hamiltonian.
Keywords: mean-field analysis; Bethe ansatz; quantum phase transition.
@article{SIGMA_2013_9_a75,
     author = {Eduardo Mattei and Jon Links},
     title = {Ground-State {Analysis} for an {Exactly} {Solvable} {Coupled-Spin} {Hamiltonian}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a75/}
}
TY  - JOUR
AU  - Eduardo Mattei
AU  - Jon Links
TI  - Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a75/
LA  - en
ID  - SIGMA_2013_9_a75
ER  - 
%0 Journal Article
%A Eduardo Mattei
%A Jon Links
%T Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a75/
%G en
%F SIGMA_2013_9_a75
Eduardo Mattei; Jon Links. Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a75/

[1] Bray-Ali N., Ding L., Haas S., “Topological order in paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries”, Phys. Rev. B, 80 (2009), 180504(R), 4 pp., arXiv: 0905.2946 | DOI

[2] Cheng M., Lutchyn R. M., Das Sarma S., “Topological protection of Majorana qubits”, Phys. Rev. B, 85 (2012), 165124, 8 pp., arXiv: 1112.3662 | DOI

[3] Dubail J., Read N., “Entanglement spectra of complex paired superfluids”, Phys. Rev. Lett., 107 (2011), 157001, 5 pp., arXiv: 1105.4808 | DOI

[4] Dunning C., Ibañez M., Links J., Sierra G., Zhao S.-Y., “Exact solution of the $p+ip$ pairing Hamiltonian and a hierarchy of integrable models”, J. Stat. Mech. Theory Exp., 2010 (2010), P08025, 62 pp., arXiv: 1001.1591 | DOI

[5] Gurarie V., Radzihovsky L., “Zero modes of two-dimensional chiral $p$-wave superconductors”, Phys. Rev. B, 75 (2007), 212509, 4 pp., arXiv: cond-mat/0610094 | DOI

[6] Hines A. P., McKenzie R. H., Milburn G. J., “Entanglement of two-mode Bose–Einstein condensates”, Phys. Rev. A, 67 (2003), 013609, 10 pp., arXiv: quant-ph/0209122 | DOI

[7] Ibañez M., Links J., Sierra G., Zhao S.-Y., “Exactly solvable pairing model for superconductors with $p_{x}+ip_{y}$-wave symmetry”, Phys. Rev. B, 79 (2009), 180501, 4 pp., arXiv: 0810.0340 | DOI | MR

[8] Kraus Y. E., Auerbach A., Fertig H. A., Simon S. H., “Majorana fermions of a two-dimensional $p_x+ip_y$ superconductor”, Phys. Rev. B, 79 (2009), 134515, 15 pp., arXiv: 0904.2920 | DOI | MR

[9] Lerma H. S., Dukelsky J., “The {L}ipkin–{M}eshkov–{G}lick model as a particular limit of the {SU(1,1)} {R}ichardson–{G}audin integrable models”, Nuclear Phys. B, 870 (2013), 421–443, arXiv: 1212.3238 | DOI | MR | Zbl

[10] Levinsen J., Cooper N. R., Shlyapnikov G. V., “Topological $p_x + ip_y$ superfluid phase of fermionic polar molecules”, Phys. Rev. A, 84 (2011), 013603, 13 pp., arXiv: 1103.3859 | DOI

[11] Marquette I., Links J., “Generalised Heine–Stieltjes and Van Vleck polynomials associated with degenerate, integrable BCS models”, J. Stat. Mech. Theory Exp., 2012 (2012), P08019, 22 pp., arXiv: 1206.2988 | DOI | MR

[12] Osborne T. J., Nielsen M. A., “Entanglement in a simple quantum phase transition”, Phys. Rev. A, 66 (2002), 032110, 14 pp., arXiv: quant-ph/0202162 | DOI | MR

[13] Osterloh A., Amico L., Falci G., Fazio R., “Scaling of entanglement close to a quantum phase transition”, Nature, 416 (2002), 608–610, arXiv: quant-ph/0202029 | DOI

[14] Pan F., Draayer J. P., “Quantum critical behavior of two coupled Bose–Einstein condensates”, Phys. Lett. A, 339 (2005), 403–407, arXiv: cond-mat/0410423 | DOI | Zbl

[15] Read N., Green D., “Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect”, Phys. Rev. B, 61 (2000), 10267–10297, arXiv: cond-mat/9906453 | DOI

[16] Rombouts S. M.A., Dukelsky J., Ortiz G., “Quantum phase diagram of the integrable $p_{x}+ip_{y}$ fermionic superfluid”, Phys. Rev. B, 82 (2010), 224510, 19 pp., arXiv: 1008.3406 | DOI

[17] Rubeni D., Foerster A., Mattei E., Roditi I., “Quantum phase transitions in Bose–Einstein condensates from a Bethe ansatz perspective”, Nuclear Phys. B, 856 (2012), 698–715, arXiv: 1204.5790 | DOI | Zbl

[18] Stone M., Chung S. B., “Fusion rules asnd vortices in $p_x+ip_y$ superconductors”, Phys. Rev. B, 73 (2006), 014505, 11 pp., arXiv: cond-mat/0505515 | DOI

[19] Tewari S., Das Sarma S., Nayak C., Zhang C. W., Zoller P., “Quantum computation using vortices and Majorana zero models of a $p_x+ip_y$ superfluid of fermionic cold atoms”, Phys. Rev. Lett., 98 (2007), 010506, 4 pp., arXiv: quant-ph/0606101 | DOI

[20] Volovik G. E., “Analog of quantum Hall effect in supefluid $^3$He film”, Sov. Phys. JETP, 67 (1988), 1804–1811

[21] Zanardi P., Paunković N., “Ground state overlap and quantum phase transitions”, Phys. Rev. E, 74 (2006), 031123, 6 pp., arXiv: quant-ph/0512249 | DOI | MR

[22] Zhou H.-Q., Barjaktarevič J. P., “Fidelity and quantum phase transitions”, J. Phys. A: Math. Theor., 41 (2008), 412001, 7 pp., arXiv: cond-mat/0701608 | DOI | MR | Zbl