@article{SIGMA_2013_9_a74,
author = {Mikhail B. Sheftel and Andrei A. Malykh},
title = {Partner {Symmetries,} {Group} {Foliation} and {ASD} {Ricci-Flat} {Metrics} without {Killing} {Vectors}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a74/}
}
TY - JOUR AU - Mikhail B. Sheftel AU - Andrei A. Malykh TI - Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors JO - Symmetry, integrability and geometry: methods and applications PY - 2013 VL - 9 UR - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a74/ LA - en ID - SIGMA_2013_9_a74 ER -
%0 Journal Article %A Mikhail B. Sheftel %A Andrei A. Malykh %T Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors %J Symmetry, integrability and geometry: methods and applications %D 2013 %V 9 %U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a74/ %G en %F SIGMA_2013_9_a74
Mikhail B. Sheftel; Andrei A. Malykh. Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a74/
[1] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional {R}iemannian geometry”, Proc. Roy. Soc. London Ser. A, 362 (1978), 425–461 | DOI | MR | Zbl
[2] Boyer C. P., Finley III J. D., “Killing vectors in self-dual, {E}uclidean {E}instein spaces”, J. Math. Phys., 23 (1982), 1126–1130 | DOI | MR | Zbl
[3] Calderbank D. M. J., Tod P., “Einstein metrics, hypercomplex structures and the {T}oda field equation”, Differential Geom. Appl., 14 (2001), 199–208, arXiv: math.DG/9911121 | DOI | MR | Zbl
[4] Dunajski M., Solitons, instantons, and twistors, Oxford Graduate Texts in Mathematics, 19, Oxford University Press, Oxford, 2010 | MR | Zbl
[5] Dunajski M., Gutowski J., Sabra W., “Enhanced Euclidean supersymmetry, 11D supergravity and ${\rm SU}(\infty)$ Toda equation”, J. High Energy Phys., 2013:10 (2013), 089, 20 pp., arXiv: 1301.1896 | DOI | MR
[6] Dunajski M., Mason L. J., “Twistor theory of hyper-{K}ähler metrics with hidden symmetries”, J. Math. Phys., 44 (2003), 3430–3454, arXiv: math.DG/0301171 | DOI | MR | Zbl
[7] Eguchi T., Gilkey P. B., Hanson A. J., “Gravitation, gauge theories and differential geometry”, Phys. Rep., 66 (1980), 213–393 | DOI | MR
[8] Hitchin N., “Compact four-dimensional {E}instein manifolds”, J. Differential Geometry, 9 (1974), 435–441 | MR | Zbl
[9] Lie S., “Über Differentialinvarianten”, Math. Ann., 24 (1884), 537–578 | DOI | MR
[10] Malykh A. A., Nutku Y., Sheftel M. B., “Partner symmetries of the complex {M}onge–{A}mpère equation yield hyper-{K}ähler metrics without continuous symmetries”, J. Phys. A: Math. Gen., 36 (2003), 10023–10037, arXiv: math-ph/0305037 | DOI | MR | Zbl
[11] Malykh A. A., Nutku Y., Sheftel M. B., “Partner symmetries and non-invariant solutions of four-dimensional heavenly equations”, J. Phys. A: Math. Gen., 37 (2004), 7527–7545, arXiv: math-ph/0403020 | DOI | MR | Zbl
[12] Malykh A. A., Nutku Y., Sheftel M. B., “Lift of noninvariant solutions of heavenly equations from three to four dimensions and new ultra-hyperbolic metrics”, J. Phys. A: Math. Theor., 40 (2007), 9371–9386, arXiv: 0704.3335 | DOI | MR | Zbl
[13] Malykh A. A., Sheftel M. B., “Recursions of symmetry orbits and reduction without reduction”, SIGMA, 7 (2011), 043, 13 pp., arXiv: 1005.0153 | DOI | MR | Zbl
[14] Martina L., Sheftel M. B., Winternitz P., “Group foliation and non-invariant solutions of the heavenly equation”, J. Phys. A: Math. Gen., 34 (2001), 9243–9263, arXiv: math-ph/0108004 | DOI | MR | Zbl
[15] Mason L. J., Newman E. T., “A connection between the {E}instein and {Y}ang–{M}ills equations”, Comm. Math. Phys., 121 (1989), 659–668 | DOI | MR | Zbl
[16] Mason L. J., Woodhouse N. M. J., Integrability, self-duality, and twistor theory, London Mathematical Society Monographs. New Series, 15, The Clarendon Press, Oxford University Press, New York, 1996 | MR
[17] Nutku Y., Sheftel M. B., A family of heavenly metrics, arXiv: gr-qc/0105088
[18] Nutku Y., Sheftel M. B., “Differential invariants and group foliation for the complex {M}onge–{A}mpère equation”, J. Phys. A: Math. Gen., 34 (2001), 137–156 | DOI | MR | Zbl
[19] Olver P. J., Applications of {L}ie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986 | DOI | MR | Zbl
[20] Ovsiannikov L. V., Group analysis of differential equations, Academic Press Inc., New York, 1982 | MR | Zbl
[21] Plebañski J. F., “Some solutions of complex {E}instein equations”, J. Math. Phys., 16 (1975), 2395–2402 | DOI | MR
[22] Schrüfer E., “EXCALC: A differential geometry package”, REDUCE, User's and Contributed Packages Manual, Version 3.8, ed. A. C. Hearn, Santa Monica, CA, 2003, 333–343
[23] Sheftel M. B., “Method of group foliation and non-invariant solutions of partial differential equations. {E}xample: the heavenly equation”, Eur. Phys. J. B, 29 (2002), 203–206 | DOI | MR
[24] Sheftel M. B., Malykh A. A., “Lift of invariant to non-invariant solutions of complex {M}onge–{A}mpère equations”, J. Nonlinear Math. Phys., 15:3 (2008), 385–395, arXiv: 0802.1463 | DOI | MR
[25] Sheftel M. B., Malykh A. A., “On classification of second-order {PDE}s possessing partner symmetries”, J. Phys. A: Math. Theor., 42 (2009), 395202, 20 pp., arXiv: 0904.2909 | DOI | MR | Zbl
[26] Tod K. P., “Scalar-flat {K}ähler and hyper-{K}ähler metrics from {P}ainlevé-{III}”, Classical Quantum Gravity, 12 (1995), 1535–1547, arXiv: gr-qc/0105088 | DOI | MR | Zbl
[27] Vessiot E., “Sur l'intégration des systèmes différentiels qui admettent des groupes continus de transformations”, Acta Math., 28 (1904), 307–349 | DOI | MR
[28] Yau S. T., “Calabi's conjecture and some new results in algebraic geometry”, Proc. Nat. Acad. Sci. USA, 74 (1977), 1798–1799 | DOI | MR | Zbl