The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear connection on a Lie algebroid is called a Cartan connection if it is suitably compatible with the Lie algebroid structure. Here we show that a smooth connected manifold $M$ is locally homogeneous — i.e., admits an atlas of charts modeled on some homogeneous space $G/H$ — if and only if there exists a transitive Lie algebroid over $M$ admitting a flat Cartan connection that is ‘geometrically closed’. It is shown how the torsion and monodromy of the connection determine the particular form of $G/H$. Under an additional completeness hypothesis, local homogeneity becomes global homogeneity, up to cover.
Keywords: locally homogeneous; Lie algebroid; Cartan connection; completeness.
@article{SIGMA_2013_9_a73,
     author = {Anthony D. Blaom},
     title = {The {Infinitesimalization} and {Reconstruction} of {Locally} {Homogeneous} {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a73/}
}
TY  - JOUR
AU  - Anthony D. Blaom
TI  - The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a73/
LA  - en
ID  - SIGMA_2013_9_a73
ER  - 
%0 Journal Article
%A Anthony D. Blaom
%T The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a73/
%G en
%F SIGMA_2013_9_a73
Anthony D. Blaom. The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a73/

[1] Abado{ğ}lu E., Orta{ç}gil E., “Intrinsic characteristic classes of a local {L}ie group”, Port. Math., 67 (2010), 453–483, arXiv: 0912.0855 | DOI | MR | Zbl

[2] Alekseevsky D. V., Michor P. W., “Differential geometry of {$\mathfrak g$}-manifolds”, Differential Geom. Appl., 5 (1995), 371–403, arXiv: math.DG/9309214 | DOI | MR | Zbl

[3] Blaom A. D., “Geometric structures as deformed infinitesimal symmetries”, Trans. Amer. Math. Soc., 358 (2006), 3651–3671, arXiv: math.DG/0404313 | DOI | MR | Zbl

[4] Blaom A. D., “Lie algebroids and {C}artan's method of equivalence”, Trans. Amer. Math. Soc., 364 (2012), 3071–3135, arXiv: math.DG/0509071 | DOI | MR | Zbl

[5] Blaom A. D., A Lie theory of pseudogroups, {i}n preparation

[6] Bott R., Tu L. W., Differential forms in algebraic topology, Graduate Texts in Mathematics, 82, Springer-Verlag, New York, 1982 | DOI | MR | Zbl

[7] Crainic M., Fernandes R. L., “Lectures on integrability of {L}ie brackets”, Lectures on {P}oisson Geometry, Geom. Topol. Monogr., 17, Geom. Topol. Publ., Coventry, 2011, 1–107, arXiv: math.DG/0611259 | MR | Zbl

[8] Dazord P., “Groupoïde d'holonomie et géométrie globale”, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 77–80 | DOI | MR | Zbl

[9] do Carmo M. P.,, Riemannian geometry, Mathematics: Theory Applications, Birkhäuser Boston Inc., Boston, MA, 1992 | MR | Zbl

[10] Goldman W. M., “Locally homogeneous geometric manifolds”, Proceedings of the {I}nternational {C}ongress of {M}athematicians, v. II, Hindustan Book Agency, New Delhi, 2010, 717–744 | MR

[11] Gunning R. C., “Special coordinate coverings of {R}iemann surfaces”, Math. Ann., 170 (1967), 67–86 | DOI | MR | Zbl

[12] Kamber F. W., Michor P. W., “Completing {L}ie algebra actions to {L}ie group actions”, Electron. Res. Announc. Amer. Math. Soc., 10 (2004), 1–10, arXiv: math.DG/0310308 | DOI | MR | Zbl

[13] Kowalski O., “On strictly locally homogeneous {R}iemannian manifolds”, Differential Geom. Appl., 7 (1997), 131–137 | DOI | MR | Zbl

[14] Mackenzie K. C. H., General theory of {L}ie groupoids and {L}ie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[15] Palais R. S., A global formulation of the {L}ie theory of transformation groups, Mem. Amer. Math. Soc., 22, 1957, iii+123 pp. | MR | Zbl

[16] Sharpe R. W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997 | MR | Zbl

[17] Thurston W. P., Three-dimensional geometry and topology, v. 1, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997 | MR | Zbl