Direct Connection between the $\text{R}_{\text{II}}$ Chain and the Nonautonomous Discrete Modified KdV Lattice
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The spectral transformation technique for symmetric $\text{R}_{\text{II}}$ polynomials is developed. Use of this technique reveals that the nonautonomous discrete modified KdV (nd-mKdV) lattice is directly connected with the $\text{R}_{\text{II}}$ chain. Hankel determinant solutions to the semi-infinite nd-mKdV lattice are also presented.
Keywords: orthogonal polynomials; spectral transformation; $\text{R}_{\text{II}}$ chain; nonautonomous discrete modified KdV lattice.
@article{SIGMA_2013_9_a72,
     author = {Kazuki Maeda and Satoshi Tsujimoto},
     title = {Direct {Connection} between the $\text{R}_{\text{II}}$ {Chain} and the {Nonautonomous} {Discrete} {Modified} {KdV} {Lattice}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a72/}
}
TY  - JOUR
AU  - Kazuki Maeda
AU  - Satoshi Tsujimoto
TI  - Direct Connection between the $\text{R}_{\text{II}}$ Chain and the Nonautonomous Discrete Modified KdV Lattice
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a72/
LA  - en
ID  - SIGMA_2013_9_a72
ER  - 
%0 Journal Article
%A Kazuki Maeda
%A Satoshi Tsujimoto
%T Direct Connection between the $\text{R}_{\text{II}}$ Chain and the Nonautonomous Discrete Modified KdV Lattice
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a72/
%G en
%F SIGMA_2013_9_a72
Kazuki Maeda; Satoshi Tsujimoto. Direct Connection between the $\text{R}_{\text{II}}$ Chain and the Nonautonomous Discrete Modified KdV Lattice. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a72/

[1] Adler M., Horozov E., van Moerbeke P., “The {P}faff lattice and skew-orthogonal polynomials”, Int. Math. Res. Not., 1999:11 (1999), 569–588, arXiv: solv-int/9903005 | DOI | MR | Zbl

[2] Adler M., van Moerbeke P., “String-orthogonal polynomials, string equations, and {$2$}-{T}oda symmetries”, Comm. Pure Appl. Math., 50 (1997), 241–290, arXiv: hep-th/9706182 | 3.3.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[3] Adler M., van Moerbeke P., “Toda versus {P}faff lattice and related polynomials”, Duke Math. J., 112 (2002), 1–58 | DOI | MR | Zbl

[4] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York, 1978 | MR | Zbl

[5] Fernando K. V., Parlett B. N., “Accurate singular values and differential qd algorithms”, Numer. Math., 67 (1994), 191–229 | DOI | MR | Zbl

[6] Grammaticos B., Ramani A., Satsuma J., Willox R., Carstea A. S., “Reductions of integrable lattices”, J. Nonlinear Math. Phys., 12:1 (2005), 363–371 | DOI | MR

[7] Hay M., Hietarinta J., Joshi N., Nijhoff F., “A {L}ax pair for a lattice modified {K}d{V} equation, reductions to {$q$}-{P}ainlevé equations and associated {L}ax pairs”, J. Phys. A: Math. Theor., 40 (2007), F61–F73 | DOI | MR | Zbl

[8] Ismail M. E. H., Masson D. R., “Generalized orthogonality and continued fractions”, J. Approx. Theory, 83 (1995), 1–40, arXiv: math.CA/9407213 | DOI | MR | Zbl

[9] Iwasaki M., Nakamura Y., “An application of the discrete {L}otka–{V}olterra system with variable step-size to singular value computation”, Inverse Problems, 20 (2004), 553–563 | DOI | MR | Zbl

[10] Iwasaki M., Nakamura Y., “Accurate computation of singular values in terms of shifted integrable schemes”, Japan J. Indust. Appl. Math., 23 (2006), 239–259 | DOI | MR | Zbl

[11] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “{$_{10}E_9$} solution to the elliptic {Painlevé} equation”, J. Phys. A: Math. Gen., 36 (2003), L263–L272, arXiv: nlin.SI/0303032 | DOI | MR | Zbl

[12] Kharchev S., Mironov A., Zhedanov A., “Faces of relativistic {T}oda chain”, Internat. J. Modern Phys. A, 12 (1997), 2675–2724, arXiv: hep-th/9606144 | DOI | MR | Zbl

[13] Maeda K., Tsujimoto S., A generalized eigenvalue algorithm for tridiagonal matrix pencils based on a nonautonomous discrete integrable system, arXiv: 1303.1035

[14] Miki H., Goda H., Tsujimoto S., “Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems”, SIGMA, 8 (2012), 008, 14 pp., arXiv: 1111.7262 | DOI | MR | Zbl

[15] Miki H., Tsujimoto S., “Cauchy biorthogonal polynomials and discrete integrable systems”, J. Nonlinear Syst. Appl., 2 (2011), 195–199

[16] Mukaihira A., Nakamura Y., Schur flow for orthogonal polynomials on the unit circle and its integrable discretization, J. Comput. Appl. Math., 139 (2002), 75–94 | DOI | MR | Zbl

[17] Mukaihira A., Tsujimoto S., “Determinant structure of {$R_I$} type discrete integrable system”, J. Phys. A: Math. Gen., 37 (2004), 4557–4565 | DOI | MR | Zbl

[18] Mukaihira A., Tsujimoto S., “Determinant structure of non-autonomous {T}oda-type integrable systems”, J. Phys. A: Math. Gen., 39 (2006), 779–788 | DOI | MR | Zbl

[19] Noumi M., Tsujimoto S., Yamada Y., “Padé interpolation for elliptic Painlevé equation”, Symmetries, Integrable Systems and Representations, Springer Proceedings in Mathematics Statistics, 40, eds. K. Iohara, S. Morier-Genoud, B. Rémy, Springer-Verlag, Berlin, 2013, 463–482, arXiv: 1204.0294 | DOI | Zbl

[20] Ormerod C. M., “Reductions of lattice m{K}d{V} to {$q$}-${\rm P}_{\rm VI}$”, Phys. Lett. A, 376 (2012), 2855–2859, arXiv: 1112.2419 | DOI | MR | Zbl

[21] Ormerod C. M., Symmetries and special solutions of reductions of the lattice potential {KdV} equation, arXiv: 1308.4233

[22] Ormerod C. M., van der Kamp P. H., Hietarinta J., Quispel G. R. W., Twisted reductions of integrable lattice equations, and their {Lax} representations, arXiv: 1307.5208

[23] Ormerod C. M., van der Kamp P. H., Quispel G. R. W., “Discrete {P}ainlevé equations and their {L}ax pairs as reductions of integrable lattice equations”, J. Phys. A: Math. Theor., 46 (2013), 095204, 22 pp., arXiv: 1209.4721 | DOI | MR | Zbl

[24] Papageorgiou V., Grammaticos B., Ramani A., “Orthogonal polynomial approach to discrete {L}ax pairs for initial-boundary value problems of the {QD} algorithm”, Lett. Math. Phys., 34 (1995), 91–101 | DOI | MR | Zbl

[25] Sakai H., “Rational surfaces associated with affine root systems and geometry of the {P}ainlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl

[26] Spiridonov V., Zhedanov A., “Discrete {D}arboux transformations, the discrete-time {T}oda lattice, and the {A}skey–{W}ilson polynomials”, Methods Appl. Anal., 2 (1995), 369–398 | MR | Zbl

[27] Spiridonov V., Zhedanov A., “Discrete-time {V}olterra chain and classical orthogonal polynomials”, J. Phys. A: Math. Gen., 30 (1997), 8727–8737 | DOI | MR | Zbl

[28] Spiridonov V., Zhedanov A., “Spectral transformation chains and some new biorthogonal rational functions”, Comm. Math. Phys., 210 (2000), 49–83 | DOI | MR | Zbl

[29] Spiridonov V. P., “Solitons and {C}oulomb plasmas, similarity reductions and special functions”, Special Functions ({H}ong {K}ong, 1999), eds. C. Dunkl, M. Ismail, R. Wong, World Sci. Publ., River Edge, NJ, 2000, 324–338 | MR | Zbl

[30] Spiridonov V. P., Tsujimoto S., Zhedanov A. S., “Integrable discrete time chains for the {F}robenius–{S}tickelberger–{T}hiele polynomials”, Comm. Math. Phys., 272 (2007), 139–165 | DOI | MR | Zbl

[31] Spiridonov V. P., Zhedanov A. S., “To the theory of biorthogonal rational functions”, RIMS Kōkyūroku, 1302 (2003), 172–192 | MR

[32] Takahashi D., Matsukidaira J., “Box and ball system with a carrier and ultradiscrete modified {K}d{V} equation”, J. Phys. A: Math. Gen., 30 (1997), L733–L739 | DOI | Zbl

[33] Tsujimoto S., “On the discrete {T}oda lattice hierarchy and orthogonal polynomials”, RIMS Kōkyūroku, 1280 (2002), 11–18 | MR

[34] Tsujimoto S., “Determinant solutions of the nonautonomous discrete {T}oda equation associated with the deautonomized discrete {KP} hierarchy”, J. Syst. Sci. Complex., 23 (2010), 153–176 | DOI | MR

[35] Tsujimoto S., Kondo K., “Molecule solutions to discrete equations and orthogonal polynomials”, RIMS Kōkyūroku, 1170 (2000), 1–8 | MR | Zbl

[36] Van Loan C. F., “Generalizing the singular value decomposition”, SIAM J. Numer. Anal., 13 (1976), 76–83 | DOI | MR | Zbl

[37] Vinet L., Zhedanov A., “An integrable chain and bi-orthogonal polynomials”, Lett. Math. Phys., 46 (1998), 233–245 | DOI | MR | Zbl

[38] Zhedanov A., “Biorthogonal rational functions and the generalized eigenvalue problem”, J. Approx. Theory, 101 (1999), 303–329 | DOI | MR | Zbl