Levi-Civita's Theorem for Noncommutative Tori
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show how to define Riemannian metrics and connections on a noncommutative torus in such a way that an analogue of Levi-Civita's theorem on the existence and uniqueness of a Riemannian connection holds. The major novelty is that we need to use two different notions of noncommutative vector field. Levi-Civita's theorem makes it possible to define Riemannian curvature using the usual formulas.
Keywords: noncommutative torus; noncommutative vector field; Riemannian metric; Levi-Civita connection; Riemannian curvature; Gauss–Bonnet theorem.
@article{SIGMA_2013_9_a70,
     author = {Jonathan Rosenberg},
     title = {Levi-Civita's {Theorem} for {Noncommutative} {Tori}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a70/}
}
TY  - JOUR
AU  - Jonathan Rosenberg
TI  - Levi-Civita's Theorem for Noncommutative Tori
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a70/
LA  - en
ID  - SIGMA_2013_9_a70
ER  - 
%0 Journal Article
%A Jonathan Rosenberg
%T Levi-Civita's Theorem for Noncommutative Tori
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a70/
%G en
%F SIGMA_2013_9_a70
Jonathan Rosenberg. Levi-Civita's Theorem for Noncommutative Tori. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a70/

[1] Bratteli O., Elliott G. A., Jorgensen P. E. T., “Decomposition of unbounded derivations into invariant and approximately inner parts”, J. Reine Angew. Math., 346 (1984), 166–193 | DOI | MR | Zbl

[2] Connes A., “{$C^{\ast}$} algèbres et géométrie différentielle”, C. R. Acad. Sci. Paris Sér. A-B, 290 (1980), A599–A604, arXiv: hep-th/0101093 | MR

[3] Connes A., Moscovici H., Modular curvature for noncommutative two-tori, arXiv: 1110.3500

[4] Connes A., Tretkoff P., “The {G}auss–{B}onnet theorem for the noncommutative two torus”, Noncommutative Geometry, Arithmetic, and Related Topics, Johns Hopkins Univ. Press, Baltimore, MD, 2011, 141–158, arXiv: 0910.0188 | MR | Zbl

[5] do Carmo M. P., Riemannian geometry, Mathematics: Theory Applications, Birkhäuser Boston Inc., Boston, MA, 1992 | MR | Zbl

[6] Elliott G. A., “The diffeomorphism group of the irrational rotation {$C^\ast$}-algebra”, C. R. Math. Rep. Acad. Sci. Canada, 8 (1986), 329–334 | MR | Zbl

[7] Fathizadeh F., Khalkhali M., “Scalar curvature for the noncommutative two torus”, J. Noncommut. Geom. (to appear) , arXiv: 1110.3511 | MR

[8] Fathizadeh F., Khalkhali M., “The {G}auss–{B}onnet theorem for noncommutative two tori with a general conformal structure”, J. Noncommut. Geom., 6 (2012), 457–480, arXiv: 1005.4947 | DOI | MR | Zbl

[9] Fathizadeh F., Khalkhali M., Scalar curvature for noncommutative four-tori, arXiv: 1301.6135

[10] Levi-Civita T., “Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura riemanniana”, Rend. Circ. Mat. Palermo, 42 (1917), 172–205 | Zbl

[11] Rosenberg J., “Noncommutative variations on {L}aplace's equation”, Anal. PDE, 1 (2008), 95–114, arXiv: 0802.4033 | DOI | MR | Zbl