Ultradiscrete Painlevé VI with Parity Variables
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a ultradiscretization with parity variables of the $q$-difference Painlevé VI system of equations. We show that ultradiscrete limit of Riccati-type solutions of $q$-Painlevé VI satisfies the ultradiscrete Painlevé VI system of equations with the parity variables, which is valid by using the parity variables. We study some solutions of the ultradiscrete Riccati-type equation and those of ultradiscrete Painlevé VI equation.
Mots-clés : Painlevé equation; ultradiscrete; numerical solutions.
@article{SIGMA_2013_9_a69,
     author = {Kouichi Takemura and Terumitsu Tsutsui},
     title = {Ultradiscrete {Painlev\'e} {VI} with {Parity} {Variables}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a69/}
}
TY  - JOUR
AU  - Kouichi Takemura
AU  - Terumitsu Tsutsui
TI  - Ultradiscrete Painlevé VI with Parity Variables
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a69/
LA  - en
ID  - SIGMA_2013_9_a69
ER  - 
%0 Journal Article
%A Kouichi Takemura
%A Terumitsu Tsutsui
%T Ultradiscrete Painlevé VI with Parity Variables
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a69/
%G en
%F SIGMA_2013_9_a69
Kouichi Takemura; Terumitsu Tsutsui. Ultradiscrete Painlevé VI with Parity Variables. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a69/

[1] Bruno A. D., Batkhin A. B. (eds.), Painlevé equations and related topics, Proceedings of the International Conference (June, 2011, Saint Petersburg, Russia), De Gruyter Proceedings in Mathematics, De Gruyter, Berlin, 2012

[2] Isojima S., Satsuma J., “A class of special solutions for the ultradiscrete {P}ainlevé {II} equation”, SIGMA, 7 (2011), 074, 9 pp., arXiv: 1107.4416 | DOI | MR | Zbl

[3] Jimbo M., Sakai H., “A {$q$}-analog of the sixth {P}ainlevé equation”, Lett. Math. Phys., 38 (1996), 145–154, arXiv: chao-dyn/9507010 | DOI | MR | Zbl

[4] Mimura N., Isojima S., Murata M., Satsuma J., “Singularity confinement test for ultradiscrete equations with parity variables”, J. Phys. A: Math. Theor., 42 (2009), 315206, 7 pp. | DOI | MR | Zbl

[5] Murata M., “Exact solutions with two parameters for an ultradiscrete {P}ainlevé equation of type {$A^{(1)}_6$}”, SIGMA, 7 (2011), 059, 15 pp., arXiv: 1106.3384 | DOI | MR | Zbl

[6] Ohta Y., Ramani A., Grammaticos B., “An affine {W}eyl group approach to the eight-parameter discrete {P}ainlevé equation”, J. Phys. A: Math. Gen., 34 (2001), 10523–10532 | DOI | MR | Zbl

[7] Ormerod C. M., “Reductions of lattice m{K}d{V} to {$q$}-{${\rm P}_{\rm VI}$}”, Phys. Lett. A, 376 (2012), 2855–2859, arXiv: 1112.2419 | DOI | MR | Zbl

[8] Ramani A., Grammaticos B., Hietarinta J., “Discrete versions of the {P}ainlevé equations”, Phys. Rev. Lett., 67 (1991), 1829–1832 | DOI | MR | Zbl

[9] Sakai H., “Casorati determinant solutions for the {$q$}-difference sixth {P}ainlevé equation”, Nonlinearity, 11 (1998), 823–833 | DOI | MR | Zbl

[10] Sakai H., “Rational surfaces associated with affine root systems and geometry of the {P}ainlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl

[11] Takahashi D., Tokihiro T., Grammaticos B., Ohta Y., Ramani A., “Constructing solutions to the ultradiscrete {P}ainlevé equations”, J. Phys. A: Math. Gen., 30 (1997), 7953–7966 | DOI | MR | Zbl

[12] Tokihiro T., Takahashi D., Matsukidaira J., Satsuma J., “From soliton equations to integrable cellular automata through a limiting procedure”, Phys. Rev. Lett., 76 (1996), 3247–3250 | DOI

[13] Tsutsui T., Ultradiscretization with parity variables of $q$-Painlevé VI, {M}aster's Thesis, Chuo University, 2013 (in Japanese)