Quasicomplex $\mathcal{N}=2$, $d=1$ Supersymmetric Sigma Models
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive and discuss a new type of $\mathcal{N}=2$ supersymmetric quantum mechanical sigma models which appear when the superfield action of the ($\mathbf{1, 2, 1}$) multiplets is modified by adding an imaginary antisymmetric tensor to the target space metric, thus completing the latter to a non-symmetric Hermitian metric. These models are not equivalent to the standard de Rham sigma models, but are related to them through a certain special similarity transformation of the supercharges. On the other hand, they can be obtained by a Hamiltonian reduction from the complex supersymmetric $\mathcal{N}=2$ sigma models built on the multiplets ($\mathbf{2, 2, 0}$) and describing the Dolbeault complex on the manifolds with proper isometries. We study in detail the extremal two-dimensional case, when the target space metric is defined solely by the antisymmetric tensor, and show that the corresponding quantum systems reveal a hidden $\mathcal{N}=4$ supersymmetry.
Keywords: supersymmetry; geometry; superfield.
@article{SIGMA_2013_9_a68,
     author = {Evgeny A. Ivanov and Andrei V. Smilga},
     title = {Quasicomplex $\mathcal{N}=2$, $d=1$ {Supersymmetric} {Sigma} {Models}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a68/}
}
TY  - JOUR
AU  - Evgeny A. Ivanov
AU  - Andrei V. Smilga
TI  - Quasicomplex $\mathcal{N}=2$, $d=1$ Supersymmetric Sigma Models
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a68/
LA  - en
ID  - SIGMA_2013_9_a68
ER  - 
%0 Journal Article
%A Evgeny A. Ivanov
%A Andrei V. Smilga
%T Quasicomplex $\mathcal{N}=2$, $d=1$ Supersymmetric Sigma Models
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a68/
%G en
%F SIGMA_2013_9_a68
Evgeny A. Ivanov; Andrei V. Smilga. Quasicomplex $\mathcal{N}=2$, $d=1$ Supersymmetric Sigma Models. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a68/

[1] Abrikosov A. A. (Jr.), Dirac operator on the Riemann sphere, arXiv: hep-th/0212134

[2] Chamseddine A. H., “Complexified gravity in noncommutative spaces”, Comm. Math. Phys., 218 (2001), 283–292, arXiv: hep-th/0005222 | DOI | MR | Zbl

[3] Chamseddine A. H., Mukhanov V., “Gravity with de {S}itter and unitary tangent groups”, J. High Energy Phys., 2010:3 (2010), 033, 18 pp., arXiv: 1002.0541 | DOI | MR | Zbl

[4] Coles R. A., Papadopoulos G., “The geometry of the one-dimensional supersymmetric nonlinear sigma models”, Classical Quantum Gravity, 7 (1990), 427–438 | DOI | MR | Zbl

[5] Delduc F., Ivanov E., “Gauging {${\mathcal N}=4$} supersymmetric mechanics”, Nuclear Phys. B, 753 (2006), 211–241, arXiv: hep-th/0605211 | DOI | MR | Zbl

[6] Dunne G. V., Jackiw R., Trugenberger C. A., ““{T}opological” ({C}hern–{S}imons) quantum mechanics”, Phys. Rev. D, 41 (1990), 661–666 | DOI | MR

[7] Einstein A., “A generalization of the relativistic theory of gravitation”, Ann. of Math., 46 (1945), 578–584 | DOI | MR | Zbl

[8] Einstein A., Straus E. G., “A generalization of the relativistic theory of gravitation, {II}”, Ann. of Math., 47 (1946), 731–741 | DOI | MR | Zbl

[9] Faddeev L., Jackiw R., “Hamiltonian reduction of unconstrained and constrained systems”, Phys. Rev. Lett., 60 (1988), 1692–1694 | DOI | MR | Zbl

[10] Fedoruk S. A., Ivanov E. A., Smilga A. V., “Real and complex supersymmetric {$d=1$} sigma models with torsions”, Internat. J. Modern Phys. A, 27 (2012), 1250146, 25 pp., arXiv: 1204.4105 | DOI | MR

[11] Floreanini R., Percacci R., Sezgin E., “Sigma models with purely {W}ess–{Z}umino–{W}itten actions”, Nuclear Phys. B, 322 (1989), 255–276 | DOI | MR

[12] Freedman D. Z., Townsend P. K., “Antisymmetric tensor gauge theories and nonlinear {$\sigma$}-models”, Nuclear Phys. B, 177 (1981), 282–296 | DOI | MR

[13] Gibbons G. W., Papadopoulos G., Stelle K. S., “H{KT} and {OKT} geometries on soliton black hole moduli spaces”, Nuclear Phys. B, 508 (1997), 623–658, arXiv: hep-th/9706207 | DOI | MR | Zbl

[14] Giveon A., Porrati M., Rabinovici E., “Target space duality in string theory”, Phys. Rep., 244 (1994), 77–202, arXiv: hep-th/9401139 | DOI | MR

[15] Hohm O., Hull C., Zwiebach B., “Generalized metric formulation of double field theory”, J. High Energy Phys., 2010:8 (2010), 008, 35 pp., arXiv: 1006.4823 | DOI | MR

[16] Howe P. S., Townsend P. K., “Chern–{S}imons quantum mechanics”, Classical Quantum Gravity, 7 (1990), 1655–1668 | DOI | MR | Zbl

[17] Hull C. M., The geometry of supersymmetric quantum mechanics, arXiv: hep-th/9910028

[18] Ivanov E. A., Smilga A. V., “Dirac operator on complex manifolds and supersymmetric quantum mechanics”, Internat. J. Modern Phys. A, 27 (2012), 1230024, 30 pp., arXiv: 1012.2069 | DOI | MR

[19] Pashnev A., Toppan F., “On the classification of {$N$}-extended supersymmetric quantum mechanical systems”, J. Math. Phys., 42 (2001), 5257–5271, arXiv: hep-th/0010135 | DOI | MR | Zbl

[20] Smilga A. V., “How to quantize supersymmetric theories”, Nuclear Phys. B, 292 (1987), 363–380 | DOI | MR

[21] Smilga A. V., “S{USY} anomaly in quantum-mechanical systems”, Phys. Lett. B, 199 (1987), 516–518 | DOI | MR

[22] Smilga A. V., “Taming the zoo of supersymmetric quantum mechanical models”, J. High Energy Phys., 2013:5 (2013), 119, 23 pp., arXiv: 1301.7438 | DOI | MR

[23] Witten E., “Constraints on supersymmetry breaking”, Nuclear Phys. B, 202 (1982), 253–316 | DOI | MR

[24] Witten E., “Supersymmetry and {M}orse theory”, J. Differential Geom., 17 (1982), 661–692 | MR | Zbl