Ultradiscrete sine-Gordon Equation over Symmetrized Max-Plus Algebra, and Noncommutative Discrete and Ultradiscrete sine-Gordon Equations
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Ultradiscretization with negative values is a long-standing problem and several attempts have been made to solve it. Among others, we focus on the symmetrized max-plus algebra, with which we ultradiscretize the discrete sine-Gordon equation. Another ultradiscretization of the discrete sine-Gordon equation has already been proposed by previous studies, but the equation and the solutions obtained here are considered to directly correspond to the discrete counterpart. We also propose a noncommutative discrete analogue of the sine-Gordon equation, reveal its relations to other integrable systems including the noncommutative discrete KP equation, and construct multisoliton solutions by a repeated application of Darboux transformations. Moreover, we derive a noncommutative ultradiscrete analogue of the sine-Gordon equation and its 1-soliton and 2-soliton solutions, using the symmetrized max-plus algebra. As a result, we have a complete set of commutative and noncommutative versions of continuous, discrete, and ultradiscrete sine-Gordon equations.
Mots-clés : ultradiscrete sine-Gordon equation; symmetrized max-plus algebra; noncommutative discrete sine-Gordon equation; noncommutative ultradiscrete sine-Gordon equation.
@article{SIGMA_2013_9_a67,
     author = {Kenichi Kondo},
     title = {Ultradiscrete {sine-Gordon} {Equation} over {Symmetrized} {Max-Plus} {Algebra,} and {Noncommutative} {Discrete} and {Ultradiscrete} {sine-Gordon} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a67/}
}
TY  - JOUR
AU  - Kenichi Kondo
TI  - Ultradiscrete sine-Gordon Equation over Symmetrized Max-Plus Algebra, and Noncommutative Discrete and Ultradiscrete sine-Gordon Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a67/
LA  - en
ID  - SIGMA_2013_9_a67
ER  - 
%0 Journal Article
%A Kenichi Kondo
%T Ultradiscrete sine-Gordon Equation over Symmetrized Max-Plus Algebra, and Noncommutative Discrete and Ultradiscrete sine-Gordon Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a67/
%G en
%F SIGMA_2013_9_a67
Kenichi Kondo. Ultradiscrete sine-Gordon Equation over Symmetrized Max-Plus Algebra, and Noncommutative Discrete and Ultradiscrete sine-Gordon Equations. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a67/

[1] Akian M., Cohen G., Gaubert S., Nikoukhah R., Quadrat J. P., “Linear systems in (max,+) algebra”, Proceedings of the 29th IEEE Conference on Decision and Control (December, 1990, Honolulu, Hawaii), IEEE, 1990, 151–156 | DOI

[2] Baccelli F. L., Cohen G., Olsder G. J., Quadrat J. P., Synchronization and linearity. An algebra for discrete event systems, John Wiley Sons Ltd., Chichester, 1992 https://www.rocq.inria.fr/metalau/cohen/SED/book-online.html | MR

[3] Date E., Jimbo M., Miwa T., “Method for generating discrete soliton equations, III”, J. Phys. Soc. Japan, 52 (1983), 388–393 | DOI | MR | Zbl

[4] De Schutter B., De Moor B., “The {QR} decomposition and the singular value decomposition in the symmetrized max-plus algebra revisited”, SIAM Rev., 44 (2002), 417–454 | DOI | MR | Zbl

[5] Gelfand I., Gelfand S., Retakh V., Wilson R. L., “Quasideterminants”, Adv. Math., 193 (2005), 56–141 | DOI | MR | Zbl

[6] Grimshaw R., El G., Khusnutdinova K., Sine-{G}ordon equation, http://homepages.lboro.ac.uk/m̃akk/NLW-L10.pdf

[7] Hirota R., “Nonlinear partial difference equations. III: {D}iscrete sine-{G}ordon equation”, J. Phys. Soc. Japan, 43 (1977), 2079–2086 | DOI | MR

[8] Isojima S., Grammaticos B., Ramani A., Satsuma J., “Ultradiscretization without positivity”, J. Phys. A: Math. Gen., 39 (2006), 3663–3672 | DOI | MR | Zbl

[9] Isojima S., Murata M., Nobe A., Satsuma J., “An ultradiscretization of the sine-{G}ordon equation”, Phys. Lett. A, 331 (2004), 378–386 | DOI | MR | Zbl

[10] Isojima S., Satsuma J., “On oscillatory solutions of the ultradiscrete sine-{G}ordon equation”, JSIAM Lett., 1 (2009), 25–27 | MR | Zbl

[11] Kasman A., Lafortune S., When is negativity not a problem for the ultradiscrete limit?, J. Math. Phys., 47 (2006), 103510, 16 pp. | DOI | MR | Zbl

[12] Kondo K., “Sato-theoretic construction of solutions to noncommutative integrable systems”, Phys. Lett. A, 375 (2011), 488–492 | DOI | MR | Zbl

[13] Lax P. D., “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl

[14] Lechtenfeld O., Mazzanti L., Penati S., Popov A. D., Tamassia L., “Integrable noncommutative sine-{G}ordon model”, Nuclear Phys. B, 705 (2005), 477–503, arXiv: hep-th/0406065 | DOI | MR | Zbl

[15] Mimura N., Isojima S., Murata M., Satsuma J., “Singularity confinement test for ultradiscrete equations with parity variables”, J. Phys. A: Math. Theor., 42 (2009), 315206, 7 pp. | DOI | MR | Zbl

[16] Nijhoff F., Capel H., “The discrete {K}orteweg–de {V}ries equation”, Acta Appl. Math., 39 (1995), 133–158 | DOI | MR | Zbl

[17] Nimmo J. J. C., “On a non-abelian {H}irota–{M}iwa equation”, J. Phys. A: Math. Gen., 39 (2006), 5053–5065 | DOI | MR | Zbl

[18] Ochiai T., Nacher J. C., “Inversible max-plus algebras and integrable systems”, J. Math. Phys., 46 (2005), 063507, 17 pp., arXiv: nlin.SI/0405067 | DOI | MR | Zbl

[19] Ormerod C. M., “Hypergeometric solutions to an ultradiscrete {P}ainlevé equation”, J. Nonlinear Math. Phys., 17 (2010), 87–102, arXiv: nlin.SI/0610048 | DOI | MR | Zbl

[20] Quispel G. R. W., Capel H. W., Scully J., “Piecewise-linear soliton equations and piecewise-linear integrable maps”, J. Phys. A: Math. Gen., 34 (2001), 2491–2503 | DOI | MR | Zbl

[21] Takahashi D., Satsuma J., “A soliton cellular automaton”, J. Phys. Soc. Japan, 59 (1990), 3514–3519 | DOI | MR

[22] Tokihiro T., Takahashi D., Matsukidaira J., Satsuma J., “From soliton equations to integrable cellular automata through a limiting procedure”, Phys. Rev. Lett., 76 (1996), 3247–3250 | DOI

[23] Yajima T., Nakajima K., Asano N., “Max-plus algebra for complex variables and its applications to discrete {F}ourier transformation and partial difference equations”, J. Phys. Soc. Japan, 75 (2006), 064001, 7 pp., arXiv: nlin.SI/0505056 | DOI | MR | Zbl