An Index for Intersecting Branes in Matrix Models
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce an index indicating the occurrence of chiral fermions at the intersection of branes in matrix models. This allows to discuss the stability of chiral fermions under perturbations of the branes.
Keywords: matrix models; noncommutative geometry; chiral fermions.
@article{SIGMA_2013_9_a66,
     author = {Harold Steinacker and Jochen Zahn},
     title = {An {Index} for {Intersecting} {Branes} in {Matrix} {Models}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a66/}
}
TY  - JOUR
AU  - Harold Steinacker
AU  - Jochen Zahn
TI  - An Index for Intersecting Branes in Matrix Models
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a66/
LA  - en
ID  - SIGMA_2013_9_a66
ER  - 
%0 Journal Article
%A Harold Steinacker
%A Jochen Zahn
%T An Index for Intersecting Branes in Matrix Models
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a66/
%G en
%F SIGMA_2013_9_a66
Harold Steinacker; Jochen Zahn. An Index for Intersecting Branes in Matrix Models. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a66/

[1] Aoki H., “Chiral fermions and the standard model from the matrix model compactified on a torus”, Progr. Theoret. Phys., 125 (2011), 521–536, arXiv: 1011.1015 | DOI | Zbl

[2] Berenstein D., Dzienkowski E., “Matrix embeddings on flat $R^3$ and the geometry of membranes”, Phys. Rev. D, 86 (2012), 086001, 19 pp., arXiv: 1204.2788 | DOI

[3] Berkooz M., Douglas M. R., Leigh R. G., “Branes intersecting at angles”, Nuclear Phys. B, 480 (1996), 265–278, arXiv: hep-th/9606139 | DOI | MR | Zbl

[4] Berline N., Getzler E., Vergne M., Heat kernels and {D}irac operators, Grundlehren der Mathematischen Wissenschaften, 298, Springer-Verlag, Berlin, 1992 | MR | Zbl

[5] Blumenhagen R., Cvetic M., Langacker P., Shiu G., “Toward realistic intersecting D-brane models”, Ann. Rev. Nucl. Part. Sci., 55 (2005), 71–139, arXiv: hep-th/0502005 | DOI

[6] Chatzistavrakidis A., Steinacker H., Zoupanos G., “Intersecting branes and a standard model realization in matrix models”, J. High Energy Phys., 2011:9 (2011), 115, 36 pp., arXiv: 1107.0265 | DOI | MR

[7] Gauntlett J. P., Intersecting branes, arXiv: hep-th/9705011 | MR

[8] Ishibashi N., Kawai H., Kitazawa Y., Tsuchiya A., “A large-{$N$} reduced model as superstring”, Nuclear Phys. B, 498 (1997), 467–491, arXiv: hep-th/9612115 | DOI | MR | Zbl

[9] Kato T., Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, 132, Springer-Verlag, New York, 1966 | MR | Zbl

[10] Nishimura J., Tsuchiya A., Realizing chiral fermions in the type IIB matrix model at finite $N$, arXiv: 1305.5547 | MR

[11] Steinacker H., “Emergent gravity from noncommutative gauge theory”, J. High Energy Phys., 2007:12 (2007), 049, 36 pp., arXiv: 0708.2426 | DOI | MR | Zbl

[12] Steinacker H., “Emergent geometry and gravity from matrix models: an introduction”, Classical Quantum Gravity, 27 (2010), 133001, 46 pp., arXiv: 1003.4134 | DOI | MR | Zbl

[13] Steinacker H., “Split noncommutativity and compactified brane solutions in matrix models”, Progr. Theoret. Phys., 126 (2011), 613–636, arXiv: 1106.6153 | DOI | Zbl