@article{SIGMA_2013_9_a66,
author = {Harold Steinacker and Jochen Zahn},
title = {An {Index} for {Intersecting} {Branes} in {Matrix} {Models}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a66/}
}
Harold Steinacker; Jochen Zahn. An Index for Intersecting Branes in Matrix Models. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a66/
[1] Aoki H., “Chiral fermions and the standard model from the matrix model compactified on a torus”, Progr. Theoret. Phys., 125 (2011), 521–536, arXiv: 1011.1015 | DOI | Zbl
[2] Berenstein D., Dzienkowski E., “Matrix embeddings on flat $R^3$ and the geometry of membranes”, Phys. Rev. D, 86 (2012), 086001, 19 pp., arXiv: 1204.2788 | DOI
[3] Berkooz M., Douglas M. R., Leigh R. G., “Branes intersecting at angles”, Nuclear Phys. B, 480 (1996), 265–278, arXiv: hep-th/9606139 | DOI | MR | Zbl
[4] Berline N., Getzler E., Vergne M., Heat kernels and {D}irac operators, Grundlehren der Mathematischen Wissenschaften, 298, Springer-Verlag, Berlin, 1992 | MR | Zbl
[5] Blumenhagen R., Cvetic M., Langacker P., Shiu G., “Toward realistic intersecting D-brane models”, Ann. Rev. Nucl. Part. Sci., 55 (2005), 71–139, arXiv: hep-th/0502005 | DOI
[6] Chatzistavrakidis A., Steinacker H., Zoupanos G., “Intersecting branes and a standard model realization in matrix models”, J. High Energy Phys., 2011:9 (2011), 115, 36 pp., arXiv: 1107.0265 | DOI | MR
[7] Gauntlett J. P., Intersecting branes, arXiv: hep-th/9705011 | MR
[8] Ishibashi N., Kawai H., Kitazawa Y., Tsuchiya A., “A large-{$N$} reduced model as superstring”, Nuclear Phys. B, 498 (1997), 467–491, arXiv: hep-th/9612115 | DOI | MR | Zbl
[9] Kato T., Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, 132, Springer-Verlag, New York, 1966 | MR | Zbl
[10] Nishimura J., Tsuchiya A., Realizing chiral fermions in the type IIB matrix model at finite $N$, arXiv: 1305.5547 | MR
[11] Steinacker H., “Emergent gravity from noncommutative gauge theory”, J. High Energy Phys., 2007:12 (2007), 049, 36 pp., arXiv: 0708.2426 | DOI | MR | Zbl
[12] Steinacker H., “Emergent geometry and gravity from matrix models: an introduction”, Classical Quantum Gravity, 27 (2010), 133001, 46 pp., arXiv: 1003.4134 | DOI | MR | Zbl
[13] Steinacker H., “Split noncommutativity and compactified brane solutions in matrix models”, Progr. Theoret. Phys., 126 (2011), 613–636, arXiv: 1106.6153 | DOI | Zbl