Special Functions of Hypercomplex Variable on the Lattice Based on SU(1,1)
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the representation of a set of canonical operators on the lattice $h\mathbb{Z}^n$, which are Clifford-vector-valued, we will introduce new families of special functions of hypercomplex variable possessing $\mathfrak{su}(1,1)$ symmetries. The Fourier decomposition of the space of Clifford-vector-valued polynomials with respect to the ${\rm SO}(n)\times \mathfrak{su}(1,1)$-module gives rise to the construction of new families of polynomial sequences as eigenfunctions of a coupled system involving forward/backward discretizations $E_h^{\pm}$ of the Euler operator $E=\sum\limits_{j=1}^nx_j \partial_{x_j}$. Moreover, the interpretation of the one-parameter representation $\mathbb{E}_h(t)=\exp(tE_h^--tE_h^+)$ of the Lie group ${\rm SU}(1,1)$ as a semigroup $\left(\mathbb{E}_h(t)\right)_{t\geq 0}$ will allows us to describe the polynomial solutions of an homogeneous Cauchy problem on $[0,\infty)\times h{\mathbb Z}^n$ involving the differencial-difference operator $\partial_t+E_h^+-E_h^-$.
Keywords: Clifford algebras; finite difference operators; Lie algebras.
@article{SIGMA_2013_9_a64,
     author = {Nelson Faustino},
     title = {Special {Functions} of {Hypercomplex} {Variable} on the {Lattice} {Based} {on~SU(1,1)}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a64/}
}
TY  - JOUR
AU  - Nelson Faustino
TI  - Special Functions of Hypercomplex Variable on the Lattice Based on SU(1,1)
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a64/
LA  - en
ID  - SIGMA_2013_9_a64
ER  - 
%0 Journal Article
%A Nelson Faustino
%T Special Functions of Hypercomplex Variable on the Lattice Based on SU(1,1)
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a64/
%G en
%F SIGMA_2013_9_a64
Nelson Faustino. Special Functions of Hypercomplex Variable on the Lattice Based on SU(1,1). Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a64/

[1] Cartier P., “Mathemagics (a tribute to {L}. {E}uler and {R}. {F}eynman)”, Noise, Oscillators and Algebraic Randomness ({C}hapelle des {B}ois, 1999), Lecture Notes in Phys., 550, Springer, Berlin, 2000, 6–67 | DOI | MR | Zbl

[2] De Ridder H., De Schepper H., Kähler U., Sommen F., “Discrete function theory based on skew {W}eyl relations”, Proc. Amer. Math. Soc., 138 (2010), 3241–3256 | DOI | MR | Zbl

[3] De Ridder H., De Schepper H., Sommen F., “Fueter polynomials in discrete {C}lifford analysis”, Math. Z., 272 (2012), 253–268 | DOI | MR | Zbl

[4] Delanghe R., Sommen F., Souček V., Clifford algebra and spinor-valued functions. A function theory for the Dirac operator, Mathematics and its Applications, 53, Kluwer Academic Publishers Group, Dordrecht, 1992 | DOI | MR | Zbl

[5] Di Bucchianico A., Loeb D. E., Rota G. C., “Umbral calculus in {H}ilbert space”, Mathematical Essays in Honor of {G}ian-{C}arlo {R}ota ({C}ambridge, {MA}, 1996), Progr. Math., 161, Birkhäuser Boston, Boston, MA, 1998, 213–238 | Zbl

[6] Dimakis A., Müller-Hoissen F., Striker T., “Umbral calculus, discretization, and quantum mechanics on a lattice”, J. Phys. A: Math. Gen., 29 (1996), 6861–6876, arXiv: quant-ph/9509014 | DOI | MR | Zbl

[7] Eelbode D., “Monogenic {A}ppell sets as representations of the {H}eisenberg algebra”, Adv. Appl. Clifford Algebr., 22 (2012), 1009–1023 | DOI | MR | Zbl

[8] Faustino N., Kähler U., “Fischer decomposition for difference {D}irac operators”, Adv. Appl. Clifford Algebr., 17 (2007), 37–58, arXiv: math.CV/0609823 | DOI | MR | Zbl

[9] Faustino N., Ren G., “({D}iscrete) {A}lmansi type decompositions: an umbral calculus framework based on {${\mathfrak{osp}}(1|2)$} symmetries”, Math. Methods Appl. Sci., 34 (2011), 1961–1979, arXiv: 1102.5434 | DOI | MR | Zbl

[10] Goodman R., Wallach N. R., Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications, 68, Cambridge University Press, Cambridge, 1998 | MR | Zbl

[11] Howe R., “Remarks on classical invariant theory”, Trans. Amer. Math. Soc., 313 (1989), 539–570 | DOI | MR | Zbl

[12] Levi D., Tempesta P., Winternitz P., “Umbral calculus, difference equations and the discrete {S}chrödinger equation”, J. Math. Phys., 45 (2004), 4077–4105, arXiv: nlin.SI/0305047 | DOI | MR | Zbl

[13] Malonek H. R., Tomaz G., “Bernoulli polynomials and {P}ascal matrices in the context of {C}lifford analysis”, Discrete Appl. Math., 157 (2009), 838–847 | DOI | MR | Zbl

[14] Odake S., Sasaki R., “Discrete quantum mechanics”, J. Phys. A: Math. Theor., 44 (2011), 353001, 47 pp., arXiv: 1104.0473 | DOI | MR | Zbl

[15] Sommen F., “An algebra of abstract vector variables”, Portugal. Math., 54 (1997), 287–310 | MR | Zbl

[16] Tempesta P., “On {A}ppell sequences of polynomials of {B}ernoulli and {E}uler type”, J. Math. Anal. Appl., 341 (2008), 1295–1310 | DOI | MR | Zbl

[17] Vilenkin N. J., Klimyk A. U., Representation of {L}ie groups and special functions, v. 1, Mathematics and its Applications (Soviet Series), 72, Simplest Lie groups, special functions and integral transforms, Kluwer Academic Publishers Group, Dordrecht, 1991 | MR | Zbl