Dunkl-Type Operators with Projections Terms Associated to Orthogonal Subsystems in Roots System
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we introduce a new differential-difference operator $T_\xi$ $(\xi \in \mathbb{R}^N)$ by using projections associated to orthogonal subsystems in root systems. Similarly to Dunkl theory, we show that these operators commute and we construct an intertwining operator between $T_\xi$ and the directional derivative $\partial_\xi$. In the case of one variable, we prove that the Kummer functions are eigenfunctions of this operator.
Keywords: special functions; differential-difference operators; integral transforms.
@article{SIGMA_2013_9_a63,
     author = {Fethi Bouzeffour},
     title = {Dunkl-Type {Operators} with {Projections} {Terms} {Associated} to {Orthogonal} {Subsystems} in {Roots} {System}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a63/}
}
TY  - JOUR
AU  - Fethi Bouzeffour
TI  - Dunkl-Type Operators with Projections Terms Associated to Orthogonal Subsystems in Roots System
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a63/
LA  - en
ID  - SIGMA_2013_9_a63
ER  - 
%0 Journal Article
%A Fethi Bouzeffour
%T Dunkl-Type Operators with Projections Terms Associated to Orthogonal Subsystems in Roots System
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a63/
%G en
%F SIGMA_2013_9_a63
Fethi Bouzeffour. Dunkl-Type Operators with Projections Terms Associated to Orthogonal Subsystems in Roots System. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a63/

[1] Bouzeffour F., “Special functions associated with complex reflection groups”, Ramanujan J. (to appear) | DOI

[2] Cherednik I., “Double affine {H}ecke algebras, {K}nizhnik–{Z}amolodchikov equations, and {M}acdonald's operators”, Int. Math. Res. Not., 1992, 171–180 | DOI | MR | Zbl

[3] Dunkl C. F., “Reflection groups and orthogonal polynomials on the sphere”, Math. Z., 197 (1988), 33–60 | DOI | MR | Zbl

[4] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl

[5] Dunkl C. F., Opdam E. M., “Dunkl operators for complex reflection groups”, Proc. London Math. Soc., 86 (2003), 70–108, arXiv: math.RT/0108185 | DOI | MR | Zbl

[6] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 81, Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl

[7] Heckman G. J., “An elementary approach to the hypergeometric shift operators of {O}pdam”, Invent. Math., 103 (1991), 341–350 | DOI | MR | Zbl

[8] Heckman G. J., “Dunkl operators”, Astérisque, 245, no. 828, 1997, 223–246 | MR | Zbl

[9] Humphreys J. E., Reflection groups and {C}oxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[10] Kober H., “On fractional integrals and derivatives”, Quart. J. Math., Oxford Ser., 11 (1940), 193–211 | DOI | MR

[11] Koornwinder T. H., Bouzeffour F., “Nonsymmetric Askey–Wilson polynomials as vector-valued polynomials”, Appl. Anal., 90 (2011), 731–746, arXiv: 1006.1140 | DOI | Zbl

[12] Luchko Y., Trujillo J. J., “Caputo-type modification of the {E}rdélyi–{K}ober fractional derivative”, Fract. Calc. Appl. Anal., 10 (2007), 249–267 | MR | Zbl

[13] Macdonald I. G., Affine {H}ecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl

[14] Opdam E. M., “Dunkl operators, {B}essel functions and the discriminant of a finite {C}oxeter group”, Compositio Math., 85 (1993), 333–373 | MR | Zbl

[15] Temme N. M., Special functions. An introduction to the classical functions of mathematical physics, A Wiley-Interscience Publication, John Wiley Sons Inc., New York, 1996 | DOI | MR