@article{SIGMA_2013_9_a62,
author = {Geoffrey Mason and Gaywalee Yamskulna},
title = {Leibniz {Algebras} and {Lie} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a62/}
}
Geoffrey Mason; Gaywalee Yamskulna. Leibniz Algebras and Lie Algebras. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a62/
[1] Ayupov Sh. A., Omirov B. A., “On {L}eibniz algebras”, Algebra and Operator Theory (Tashkent, 1997), Kluwer Acad. Publ., Dordrecht, 1998, 1–12 | DOI | MR | Zbl
[2] Barnes D. W., “On {E}ngel's theorem for {L}eibniz algebras”, Comm. Algebra, 40 (2012), 1388–1389, arXiv: 1012.0608 | DOI | MR | Zbl
[3] Barnes D. W., “On {L}evi's theorem for {L}eibniz algebras”, Bull. Aust. Math. Soc., 86 (2012), 184–185, arXiv: 1109.1060 | DOI | MR | Zbl
[4] Lepowsky J., Li H., Introduction to vertex operator algebras and their representations, Progress in Mathematics, 227, Birkhäuser Boston Inc., Boston, MA, 2004 | DOI | MR | Zbl
[5] Loday J. L., “Une version non commutative des algèbres de {L}ie: les algèbres de {L}eibniz”, Enseign. Math., 39 (1993), 269–293 | MR | Zbl
[6] Loday J. L., Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301, 2nd ed., Springer-Verlag, Berlin, 1998 | DOI | MR | Zbl
[7] Mason G., Yamskulna G., On the structure of $\mathbb{N}$-graded vertex operator algebras, arXiv: 1310.0545