Leibniz Algebras and Lie Algebras
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper concerns the algebraic structure of finite-dimensional complex Leibniz algebras. In particular, we introduce left central and symmetric Leibniz algebras, and study the poset of Lie subalgebras using an associative bilinear pairing taking values in the Leibniz kernel.
Keywords: Leibniz algebras; Lie algebras.
@article{SIGMA_2013_9_a62,
     author = {Geoffrey Mason and Gaywalee Yamskulna},
     title = {Leibniz {Algebras} and {Lie} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a62/}
}
TY  - JOUR
AU  - Geoffrey Mason
AU  - Gaywalee Yamskulna
TI  - Leibniz Algebras and Lie Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a62/
LA  - en
ID  - SIGMA_2013_9_a62
ER  - 
%0 Journal Article
%A Geoffrey Mason
%A Gaywalee Yamskulna
%T Leibniz Algebras and Lie Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a62/
%G en
%F SIGMA_2013_9_a62
Geoffrey Mason; Gaywalee Yamskulna. Leibniz Algebras and Lie Algebras. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a62/

[1] Ayupov Sh. A., Omirov B. A., “On {L}eibniz algebras”, Algebra and Operator Theory (Tashkent, 1997), Kluwer Acad. Publ., Dordrecht, 1998, 1–12 | DOI | MR | Zbl

[2] Barnes D. W., “On {E}ngel's theorem for {L}eibniz algebras”, Comm. Algebra, 40 (2012), 1388–1389, arXiv: 1012.0608 | DOI | MR | Zbl

[3] Barnes D. W., “On {L}evi's theorem for {L}eibniz algebras”, Bull. Aust. Math. Soc., 86 (2012), 184–185, arXiv: 1109.1060 | DOI | MR | Zbl

[4] Lepowsky J., Li H., Introduction to vertex operator algebras and their representations, Progress in Mathematics, 227, Birkhäuser Boston Inc., Boston, MA, 2004 | DOI | MR | Zbl

[5] Loday J. L., “Une version non commutative des algèbres de {L}ie: les algèbres de {L}eibniz”, Enseign. Math., 39 (1993), 269–293 | MR | Zbl

[6] Loday J. L., Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301, 2nd ed., Springer-Verlag, Berlin, 1998 | DOI | MR | Zbl

[7] Mason G., Yamskulna G., On the structure of $\mathbb{N}$-graded vertex operator algebras, arXiv: 1310.0545