The Algebra of a $q$-Analogue of Multiple Harmonic Series
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce an algebra which describes the multiplication structure of a family of $q$-series containing a $q$-analogue of multiple zeta values. The double shuffle relations are formulated in our framework. They contain a $q$-analogue of Hoffman's identity for multiple zeta values. We also discuss the dimension of the space spanned by the linear relations realized in our algebra.
Keywords: multiple harmonic series; $q$-analogue.
@article{SIGMA_2013_9_a60,
     author = {Yoshihiro Takeyama},
     title = {The {Algebra} of a~$q${-Analogue} of {Multiple} {Harmonic} {Series}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a60/}
}
TY  - JOUR
AU  - Yoshihiro Takeyama
TI  - The Algebra of a $q$-Analogue of Multiple Harmonic Series
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a60/
LA  - en
ID  - SIGMA_2013_9_a60
ER  - 
%0 Journal Article
%A Yoshihiro Takeyama
%T The Algebra of a $q$-Analogue of Multiple Harmonic Series
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a60/
%G en
%F SIGMA_2013_9_a60
Yoshihiro Takeyama. The Algebra of a $q$-Analogue of Multiple Harmonic Series. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a60/

[1] Bradley D. M., “Multiple {$q$}-zeta values”, J. Algebra, 283 (2005), 752–798, arXiv: math.QA/0402093 | DOI | MR | Zbl

[2] Drinfel'd V. G., “On quasitriangular quasi-{H}opf algebras and on a group that is closely connected with $\mathrm{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$”, Leningrad Math. J., 2 (1991), 829–860 | MR

[3] Hoffman M. E., “Multiple harmonic series”, Pacific J. Math., 152 (1992), 275–290 | DOI | MR | Zbl

[4] Hoffman M. E., “The algebra of multiple harmonic series”, J. Algebra, 194 (1997), 477–495 | DOI | MR | Zbl

[5] Hoffman M. E., Ohno Y., “Relations of multiple zeta values and their algebraic expression”, J. Algebra, 262 (2003), 332–347, arXiv: math.QA/0010140 | DOI | MR | Zbl

[6] Ihara K., Kaneko M., Zagier D., “Derivation and double shuffle relations for multiple zeta values”, Compos. Math., 142 (2006), 307–338 | DOI | MR | Zbl

[7] Kaneko M., Kurokawa N., Wakayama M., “A variation of {E}uler's approach to values of the {R}iemann zeta function”, Kyushu J. Math., 57 (2003), 175–192, arXiv: math.QA/0206171 | DOI | MR | Zbl

[8] Ohno Y., Okuda J., Zudilin W., “Cyclic {$q$}-{MZSV} sum”, J. Number Theory, 132 (2012), 144–155 | DOI | MR | Zbl

[9] Okuda J., Takeyama Y., “On relations for the multiple {$q$}-zeta values”, Ramanujan J., 14 (2007), 379–387, arXiv: math.QA/0402152 | DOI | MR | Zbl

[10] Zagier D., “Values of zeta functions and their applications”, First {E}uropean {C}ongress of {M}athematics ({P}aris, 1992), v. II, Progr. Math., 120, Birkhäuser, Basel, 1994, 497–512 | MR | Zbl

[11] Zhao J., “Multiple {$q$}-zeta functions and multiple {$q$}-polylogarithms”, Ramanujan J., 14 (2007), 189–221 | DOI | MR | Zbl