@article{SIGMA_2013_9_a6,
author = {Charles F. Dunkl},
title = {Vector-Valued {Polynomials} and a {Matrix} {Weight} {Function} with $B_2${-Action}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a6/}
}
Charles F. Dunkl. Vector-Valued Polynomials and a Matrix Weight Function with $B_2$-Action. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a6/
[1] Carter R. W., Finite groups of Lie type. Conjugacy classes and complex characters, Wiley Classics Library, John Wiley Sons Ltd., Chichester, 1993 | MR
[2] Dunkl C. F., “Differential-difference operators and monodromy representations of Hecke algebras”, Pacific J. Math., 159 (1993), 271–298 | DOI | MR | Zbl
[3] Dunkl C. F., “Monodromy of hypergeometric functions for dihedral groups”, Integral Transform. Spec. Funct., 1 (1993), 75–86 | DOI | MR | Zbl
[4] Dunkl C. F., Opdam E. M., “Dunkl operators for complex reflection groups”, Proc. London Math. Soc., 86 (2003), 70–108, arXiv: math.RT/0108185 | DOI | MR | Zbl
[5] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 81, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[6] Etingof P., Stoica E., “Unitary representations of rational Cherednik algebras”, Represent. Theory, 13 (2009), 349–370, arXiv: 0901.4595 | DOI | MR | Zbl
[7] Griffeth S., “Orthogonal functions generalizing Jack polynomials”, Trans. Amer. Math. Soc., 362 (2010), 6131–6157, arXiv: 0707.0251 | DOI | MR | Zbl
[8] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W. (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce National Institute of Standards and Technology, Washington, DC, 2010 | MR