Vector-Valued Polynomials and a Matrix Weight Function with $B_2$-Action
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of orthogonal polynomials on $\mathbb{R}^{2}$ with the weight function $\vert x_{1}^{2}-x_{2}^{2}\vert ^{2k_{0}}\vert x_{1}x_{2}\vert ^{2k_{1}}e^{-( x_{1}^{2}+x_{2}^{2}) /2}$ is based on the Dunkl operators of type $B_{2}$. This refers to the full symmetry group of the square, generated by reflections in the lines $x_{1}=0$ and $x_{1}-x_{2}=0$. The weight function is integrable if $k_{0},k_{1},k_{0} +k_{1}>-\frac{1}{2}$. Dunkl operators can be defined for polynomials taking values in a module of the associated reflection group, that is, a vector space on which the group has an irreducible representation. The unique $2$-dimensional representation of the group $B_{2}$ is used here. The specific operators for this group and an analysis of the inner products on the harmonic vector-valued polynomials are presented in this paper. An orthogonal basis for the harmonic polynomials is constructed, and is used to define an exponential-type kernel. In contrast to the ordinary scalar case the inner product structure is positive only when $( k_{0},k_{1}) $ satisfy $-\frac{1}{2}$. For vector polynomials $( f_{i}) _{i=1}^{2}$, $( g_{i}) _{i=1}^{2}$ the inner product has the form $\iint_{\mathbb{R}^{2}}f(x) K(x) g(x) ^{T}e^{-( x_{1}^{2}+x_{2}^{2}) /2}dx_{1}dx_{2}$ where the matrix function $K(x)$ has to satisfy various transformation and boundary conditions. The matrix $K$ is expressed in terms of hypergeometric functions.
Keywords: matrix Gaussian weight function; harmonic polynomials.
@article{SIGMA_2013_9_a6,
     author = {Charles F. Dunkl},
     title = {Vector-Valued {Polynomials} and a {Matrix} {Weight} {Function} with $B_2${-Action}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a6/}
}
TY  - JOUR
AU  - Charles F. Dunkl
TI  - Vector-Valued Polynomials and a Matrix Weight Function with $B_2$-Action
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a6/
LA  - en
ID  - SIGMA_2013_9_a6
ER  - 
%0 Journal Article
%A Charles F. Dunkl
%T Vector-Valued Polynomials and a Matrix Weight Function with $B_2$-Action
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a6/
%G en
%F SIGMA_2013_9_a6
Charles F. Dunkl. Vector-Valued Polynomials and a Matrix Weight Function with $B_2$-Action. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a6/

[1] Carter R. W., Finite groups of Lie type. Conjugacy classes and complex characters, Wiley Classics Library, John Wiley Sons Ltd., Chichester, 1993 | MR

[2] Dunkl C. F., “Differential-difference operators and monodromy representations of Hecke algebras”, Pacific J. Math., 159 (1993), 271–298 | DOI | MR | Zbl

[3] Dunkl C. F., “Monodromy of hypergeometric functions for dihedral groups”, Integral Transform. Spec. Funct., 1 (1993), 75–86 | DOI | MR | Zbl

[4] Dunkl C. F., Opdam E. M., “Dunkl operators for complex reflection groups”, Proc. London Math. Soc., 86 (2003), 70–108, arXiv: math.RT/0108185 | DOI | MR | Zbl

[5] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 81, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[6] Etingof P., Stoica E., “Unitary representations of rational Cherednik algebras”, Represent. Theory, 13 (2009), 349–370, arXiv: 0901.4595 | DOI | MR | Zbl

[7] Griffeth S., “Orthogonal functions generalizing Jack polynomials”, Trans. Amer. Math. Soc., 362 (2010), 6131–6157, arXiv: 0707.0251 | DOI | MR | Zbl

[8] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W. (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce National Institute of Standards and Technology, Washington, DC, 2010 | MR