Generalized Fuzzy Torus and its Modular Properties
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a generalization of the basic fuzzy torus to a fuzzy torus with non-trivial modular parameter, based on a finite matrix algebra. We discuss the modular properties of this fuzzy torus, and compute the matrix Laplacian for a scalar field. In the semi-classical limit, the generalized fuzzy torus can be used to approximate a generic commutative torus represented by two generic vectors in the complex plane, with generic modular parameter $\tau$. The effective classical geometry and the spectrum of the Laplacian are correctly reproduced in the limit. The spectrum of a matrix Dirac operator is also computed.
Keywords: fuzzy spaces; noncommutative geometry; matrix models.
@article{SIGMA_2013_9_a59,
     author = {Paul Schreivogl and Harold Steinacker},
     title = {Generalized {Fuzzy} {Torus} and its {Modular} {Properties}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a59/}
}
TY  - JOUR
AU  - Paul Schreivogl
AU  - Harold Steinacker
TI  - Generalized Fuzzy Torus and its Modular Properties
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a59/
LA  - en
ID  - SIGMA_2013_9_a59
ER  - 
%0 Journal Article
%A Paul Schreivogl
%A Harold Steinacker
%T Generalized Fuzzy Torus and its Modular Properties
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a59/
%G en
%F SIGMA_2013_9_a59
Paul Schreivogl; Harold Steinacker. Generalized Fuzzy Torus and its Modular Properties. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a59/

[1] Alexanian G., Balachandran A. P., Immirzi G., Ydri B., “Fuzzy ${\mathbb C}\mathrm{P}^2$”, J. Geom. Phys., 42 (2002), 28–53, arXiv: hep-th/0103023 | DOI | MR | Zbl

[2] Arnlind J., Choe J., Hoppe J., Noncommutative minimal surfaces, arXiv: 1301.0757

[3] Arnlind J., Hoppe J., Huisken G., Discrete curvature and the Gauss–Bonnet theorem, arXiv: 1001.2223

[4] Aschieri P., Grammatikopoulos T., Steinacker H., Zoupanos G., “Dynamical generation of fuzzy extra dimensions, dimensional reduction and symmetry breaking”, J. High Energy Phys., 2006:9 (2006), 026, 26 pp., arXiv: hep-th/0606021 | DOI | MR

[5] Banks T., Fischler W., Shenker S. H., Susskind L., “M theory as a matrix model: a conjecture”, Phys. Rev. D, 55 (1997), 5112–5128, arXiv: hep-th/9610043 | DOI | MR

[6] Chaichian M., Demichev A., Prešnajder P., Sheikh-Jabbari M. M., Tureanu A., “Quantum theories on noncommutative spaces with nontrivial topology: {A}haronov–{B}ohm and {C}asimir effects”, Nuclear Phys. B, 611 (2001), 383–402, arXiv: hep-th/0101209 | DOI | MR | Zbl

[7] Connes A., Douglas M. R., Schwarz A., “Noncommutative geometry and matrix theory: compactification on tori”, J. High Energy Phys., 1998:2 (1998), 003, 35 pp., arXiv: hep-th/9711162 | DOI | MR

[8] Grosse H., Klimčík C., Prešnajder P., “On finite {$4$}{D} quantum field theory in non-commutative geometry”, Comm. Math. Phys., 180 (1996), 429–438, arXiv: hep-th/9602115 | DOI | MR | Zbl

[9] Grosse H., Prešnajder P., “The {D}irac operator on the fuzzy sphere”, Lett. Math. Phys., 33 (1995), 171–181 | DOI | MR | Zbl

[10] Hofman C., Verlinde E., “U-duality of Born–Infeld on the noncommutative two-torus”, J. High Energy Phys., 1998:12 (1998), 010, 21 pp., arXiv: hep-th/9810116 | DOI | MR

[11] Hofman C., Verlinde E., “Gauge bundles and {B}orn–{I}nfeld on the non-commutative torus”, Nuclear Phys. B, 547 (1999), 157–178, arXiv: hep-th/9810219 | DOI | MR | Zbl

[12] Hoppe J., “Some classical solutions of membrane matrix model equations”, Strings, Branes and Dualities ({C}argèse, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 520, Kluwer Acad. Publ., Dordrecht, 1999, 423–427, arXiv: hep-th/9702169 | MR | Zbl

[13] Ishibashi N., Kawai H., Kitazawa Y., Tsuchiya A., “A large-{$N$} reduced model as superstring”, Nuclear Phys. B, 498 (1997), 467–491, arXiv: hep-th/9612115 | DOI | MR | Zbl

[14] Kimura Y., “Noncommutative gauge theories on fuzzy sphere and fuzzy torus from matrix model”, Progr. Theoret. Phys., 106 (2001), 445–469, arXiv: hep-th/0103192 | DOI | MR | Zbl

[15] Landi G., Lizzi F., Szabo R. J., “From large {$N$} matrices to the noncommutative torus”, Comm. Math. Phys., 217 (2001), 181–201, arXiv: hep-th/9912130 | DOI | MR | Zbl

[16] Madore J., “The fuzzy sphere”, Classical Quantum Gravity, 9 (1992), 69–87 | DOI | MR | Zbl

[17] Nakahara M., Geometry, topology and physics, Graduate Student Series in Physics, 2nd ed., Institute of Physics, Bristol, 2003 | MR | Zbl

[18] Steinacker H., “Emergent gravity and noncommutative branes from {Y}ang–{M}ills matrix models”, Nuclear Phys. B, 810 (2009), 1–39, arXiv: 0806.2032 | DOI | MR | Zbl

[19] Steinacker H., “Emergent geometry and gravity from matrix models: an introduction”, Classical Quantum Gravity, 27 (2010), 133001, 46 pp., arXiv: 1003.4134 | DOI | MR | Zbl

[20] Steinacker H., “Non-commutative geometry and matrix models”, PoS Proc. Sci., 2011, PoS(QGQGS2011)004, 27 pp., arXiv: 1109.5521 | MR