@article{SIGMA_2013_9_a56,
author = {Ernest G. Kalnins and Willard Miller Jr. and Sarah Post},
title = {Contractions of {2D} 2nd {Order} {Quantum} {Superintegrable} {Systems} and the {Askey} {Scheme} for {Hypergeometric} {Orthogonal} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a56/}
}
TY - JOUR AU - Ernest G. Kalnins AU - Willard Miller Jr. AU - Sarah Post TI - Contractions of 2D 2nd Order Quantum Superintegrable Systems and the Askey Scheme for Hypergeometric Orthogonal Polynomials JO - Symmetry, integrability and geometry: methods and applications PY - 2013 VL - 9 UR - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a56/ LA - en ID - SIGMA_2013_9_a56 ER -
%0 Journal Article %A Ernest G. Kalnins %A Willard Miller Jr. %A Sarah Post %T Contractions of 2D 2nd Order Quantum Superintegrable Systems and the Askey Scheme for Hypergeometric Orthogonal Polynomials %J Symmetry, integrability and geometry: methods and applications %D 2013 %V 9 %U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a56/ %G en %F SIGMA_2013_9_a56
Ernest G. Kalnins; Willard Miller Jr.; Sarah Post. Contractions of 2D 2nd Order Quantum Superintegrable Systems and the Askey Scheme for Hypergeometric Orthogonal Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a56/
[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[2] Askey R., “An integral of Ramanujan and orthogonal polynomials”, J. Indian Math. Soc. (N.S.), 51 (1987), 27–36 | MR | Zbl
[3] Bonatsos D., Daskaloyannis C., Kokkotas K., “Deformed oscillator algebras for two-dimensional quantum superintegrable systems”, Phys. Rev. A, 50 (1994), 3700–3709, arXiv: hep-th/9309088 | DOI | MR
[4] Daskaloyannis C., “Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems”, J. Math. Phys., 42 (2001), 1100–1119, arXiv: math-ph/0003017 | DOI | MR | Zbl
[5] Daskaloyannis C., Tanoudis Y., “Quantum superintegrable systems with quadratic integrals on a two dimensional manifold”, J. Math. Phys., 48 (2007), 072108, 22 pp., arXiv: math-ph/0607058 | DOI | MR | Zbl
[6] Daskaloyannis C., Ypsilantis K., “Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold”, J. Math. Phys., 47 (2006), 042904, 38 pp., arXiv: math-ph/0412055 | DOI | MR | Zbl
[7] Gao S., Wang Y., Hou B., “The classification of Leonard triples of Racah type”, Linear Algebra Appl., 439 (2013), 1834–1861 | DOI | MR
[8] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[9] Genest V. X., Vinet L., Zhedanov A., Superintegrability in two dimensions and the Racah–Wilson algebra, arXiv: 1307.5539
[10] Granovskii Y. I., Lutzenko I. M., Zhedanov A. S., “Mutual integrability, quadratic algebras, and dynamical symmetry”, Ann. Physics, 217 (1992), 1–20 | DOI | MR
[11] Granovskii Y. I., Zhedanov A. S., Lutsenko I. M., “Quadratic algebras and dynamics in curved space. I: An oscillator”, Theoret. and Math. Phys., 91 (1992), 474–480 | DOI | MR
[12] Granovskii Y. I., Zhedanov A. S., Lutsenko I. M., “Quadratic algebras and dynamics in curved space. II: The Kepler problem”, Theoret. and Math. Phys., 91 (1992), 604–612 | DOI | MR
[13] Granovskii Y. I., Zhedanov A. S., Lutzenko I. M., “Quadratic algebra as a “hidden” symmetry of the Hartmann potential”, J. Phys. A: Math. Gen., 24 (1991), 3887–3894 | DOI | MR
[14] Inönü E., Wigner E. P., “On the contraction of groups and their representations”, Proc. Nat. Acad. Sci. USA, 39 (1953), 510–524 | DOI | MR | Zbl
[15] Izmest'ev A. A., Pogosyan G. S., Sissakian A. N., Winternitz P., “Contractions of Lie algebras and separation of variables”, J. Phys. A: Math. Gen., 29 (1996), 5949–5962 | DOI | MR
[16] Kalnins E. G., Kress J. M., Miller Jr. W., “Second order superintegrable systems in conformally flat spaces. I: 2D classical structure theory”, J. Math. Phys., 46 (2005), 053509, 28 pp. | DOI | MR | Zbl
[17] Kalnins E. G., Kress J. M., Miller Jr. W., “Second order superintegrable systems in conformally flat spaces. II: The classical two-dimensional Stäckel transform”, J. Math. Phys., 46 (2005), 053510, 15 pp. | DOI | MR | Zbl
[18] Kalnins E. G., Kress J. M., Miller Jr. W., “Nondegenerate 2D complex Euclidean superintegrable systems and algebraic varieties”, J. Phys. A: Math. Theor., 40 (2007), 3399–3411, arXiv: 0708.3044 | DOI | MR | Zbl
[19] Kalnins E. G., Kress J. M., Miller Jr. W., “Structure relations for the symmetry algebras of quantum superintegrable systems”, J. Phys. Conf. Ser., 343 (2012), 012075, 12 pp. | DOI
[20] Kalnins E. G., Kress J. M., Miller Jr. W., Post S., “Structure theory for second order 2D superintegrable systems with 1-parameter potentials”, SIGMA, 5 (2009), 008, 24 pp., arXiv: 0901.3081 | MR | Zbl
[21] Kalnins E. G., Kress J. M., Miller Jr. W., Winternitz P., “Superintegrable systems in Darboux spaces”, J. Math. Phys., 44 (2003), 5811–5848, arXiv: math-ph/0307039 | DOI | MR | Zbl
[22] Kalnins E. G., Kress J. M., Pogosyan G. S., Miller Jr. W., “Completeness of superintegrability in two-dimensional constant-curvature spaces”, J. Phys. A: Math. Gen., 34 (2001), 4705–4720, arXiv: math-ph/0102006 | DOI | MR | Zbl
[23] Kalnins E. G., Miller Jr. W., Pogosyan G. S., “Contractions of Lie algebras: applications to special functions and separation of variables”, J. Phys. A: Math. Gen., 32 (1999), 4709–4732 | DOI | MR | Zbl
[24] Kalnins E. G., Miller Jr. W., Post S., “Wilson polynomials and the generic superintegrable system on the 2-sphere”, J. Phys. A: Math. Theor., 40 (2007), 11525–11538 | DOI | MR | Zbl
[25] Kalnins E. G., Miller Jr. W., Post S., “Models for the 3D singular isotropic oscillator quadratic algebra”, Phys. Atomic Nuclei, 73 (2010), 359–366 | DOI
[26] Kalnins E. G., Miller Jr. W., Post S., “Two-variable Wilson polynomials and the generic superintegrable system on the 3-sphere”, SIGMA, 7 (2011), 051, 26 pp., arXiv: 1010.3032 | MR | Zbl
[27] Kalnins E. G., Miller Jr. W., Subag E., Heinenen R., Contractions of 2nd order superintegrable systems in 2D, in preparation
[28] Kalnins E. G., Williams G. C., Miller Jr. W., Pogosyan G. S., “On superintegrable symmetry-breaking potentials in $N$-dimensional Euclidean space”, J. Phys. A: Math. Gen., 35 (2002), 4755–4773 | DOI | MR | Zbl
[29] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[30] Koornwinder T. H., “Group theoretic interpretations of Askey's scheme of hypergeometric orthogonal polynomials”, Orthogonal Polynomials and their Applications (Segovia, 1986), Lecture Notes in Math., 1329, Springer, Berlin, 1988, 46–72 | DOI | MR
[31] Krall H. L., Frink O., “A new class of orthogonal polynomials: the Bessel polynomials”, Trans. Amer. Math. Soc., 65 (1949), 100–115 | DOI | MR | Zbl
[32] Kress J. M., “Equivalence of superintegrable systems in two dimensions”, Phys. Atomic Nuclei, 70 (2007), 560–566 | DOI
[33] Létourneau P., Vinet L., “Superintegrable systems: polynomial algebras and quasi-exactly solvable Hamiltonians”, Ann. Physics, 243 (1995), 144–168 | DOI | MR | Zbl
[34] Miller Jr. W., Symmetry and separation of variables, Encyclopedia of Mathematics and its Applications, 4, Addison-Wesley Publishing Co., Reading, Mass.–London–Amsterdam, 1977 | MR | Zbl
[35] Miller Jr. W., Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor. (to appear) , arXiv: 1309.2694 | MR
[36] Mostafazadeh A., “Pseudo-Hermiticity versus $PT$ symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43 (2002), 205–214, arXiv: math-ph/0107001 | DOI | MR | Zbl
[37] Talman J. D., Special functions: a group theoretic approach (based on lectures by Eugene P. Wigner), W. A. Benjamin, Inc., New York–Amsterdam, 1968 | MR | Zbl
[38] Terwilliger P., “The universal Askey–Wilson algebra and the equitable presentation of $U_q(\mathfrak{sl}_2)$”, SIGMA, 7 (2011), 099, 26 pp., arXiv: 1107.3544 | MR | Zbl
[39] Weimar-Woods E., “The three-dimensional real Lie algebras and their contractions”, J. Math. Phys., 32 (1991), 2028–2033 | DOI | MR | Zbl
[40] Zhedanov A. S., ““Hidden symmetry” of Askey–Wilson polynomials”, Theoret. and Math. Phys., 89 (1991), 1146–1157 | DOI | MR | Zbl