Integrability of Discrete Equations Modulo a Prime
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We apply the “almost good reduction” (AGR) criterion, which has been introduced in our previous works, to several classes of discrete integrable equations. We verify our conjecture that AGR plays the same role for maps of the plane define over simple fiinite fields as the notion of the singularity confinement does. We first prove that $q$-discrete analogues of the Painlevé III and IV equations have AGR. We next prove that the Hietarinta–Viallet equation, a non-integrable chaotic system also has AGR.
Keywords: integrability test; good reduction; discrete Painlevé equation; finite field.
@article{SIGMA_2013_9_a55,
     author = {Masataka Kanki},
     title = {Integrability of {Discrete} {Equations} {Modulo} {a~Prime}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a55/}
}
TY  - JOUR
AU  - Masataka Kanki
TI  - Integrability of Discrete Equations Modulo a Prime
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a55/
LA  - en
ID  - SIGMA_2013_9_a55
ER  - 
%0 Journal Article
%A Masataka Kanki
%T Integrability of Discrete Equations Modulo a Prime
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a55/
%G en
%F SIGMA_2013_9_a55
Masataka Kanki. Integrability of Discrete Equations Modulo a Prime. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a55/

[1] Bellon M. P., Viallet C. M., “Algebraic entropy”, Comm. Math. Phys., 204 (1999), 425–437, arXiv: chao-dyn/9805006 | DOI | MR | Zbl

[2] Białecki M., Doliwa A., “The discrete KP and KdV equations over finite fields”, Theoret. and Math. Phys., 137 (2003), 1412–1418, arXiv: nlin.SI/0302064 | DOI | MR | Zbl

[3] Grammaticos B., Ramani A., Papageorgiou V., Do integrable mappings have the Painlevé property?, Phys. Rev. Lett., 67 (1991), 1825–1828 | DOI | MR | Zbl

[4] Halburd R. G., “Diophantine integrability”, J. Phys. A: Math. Gen., 38 (2005), L263–L269, arXiv: nlin.SI/0504027 | DOI | MR | Zbl

[5] Hietarinta J., Viallet C., “Singularity confinement and chaos in discrete systems”, Phys. Rev. Lett., 81 (1998), 325–328, arXiv: solv-int/9711014 | DOI

[6] Kajiwara K., Noumi M., Yamada Y., “Discrete dynamical systems with $W(A^{(1)}_{m-1}\times A^{(1)}_{n-1})$ symmetry”, Lett. Math. Phys., 60 (2002), 211–219, arXiv: nlin.SI/0106029 | DOI | MR | Zbl

[7] Kanki M., Mada J., Tamizhmani K. M., Tokihiro T., “Discrete Painlevé II equation over finite fields”, J. Phys. A: Math. Theor., 45 (2012), 342001, 8 pp., arXiv: 1206.4456 | DOI | MR | Zbl

[8] Kanki M., Mada J., Tokihiro T., The space of initial conditions and the property of an almost good reduction in discrete Painlevé II equations over finite fields, arXiv: 1209.0223

[9] Quispel G. R. W., Roberts J. A. G., Thompson C. J., “Integrable mappings and soliton equations”, Phys. Lett. A, 126 (1988), 419–421 | DOI | MR | Zbl

[10] Ramani A., Grammaticos B., “Discrete Painlevé equations: coalescences, limits and degeneracies”, Phys. A, 228 (1996), 160–171, arXiv: solv-int/9510011 | DOI | MR | Zbl

[11] Ramani A., Grammaticos B., Hietarinta J., “Discrete versions of the Painlevé equations”, Phys. Rev. Lett., 67 (1991), 1829–1832 | DOI | MR | Zbl

[12] Roberts J. A. G., “Order and symmetry in birational difference equations and their signatures over finite phase spaces”, Proceedings of the Workshop Future Directions in Difference Equations, Colecc. Congr., 69, Univ. Vigo, Serv. Publ., Vigo, 2011, 213–221 | MR | Zbl

[13] Roberts J. A. G., Vivaldi F., “Signature of time-reversal symmetry in polynomial automorphisms over finite fields”, Nonlinearity, 18 (2005), 2171–2192 | DOI | MR | Zbl

[14] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl

[15] Silverman J. H., The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, New York, 2007 | DOI | MR | Zbl

[16] Takahashi Y., Irregular solutions of the periodic discrete Toda equation, Master's thesis, The University of Tokyo, 2011 (in Japanese)

[17] Takenawa T., “Algebraic entropy and the space of initial values for discrete dynamical systems”, J. Phys. A: Math. Gen., 34 (2001), 10533–10545, arXiv: nlin.SI/0103011 | DOI | MR | Zbl

[18] Wolfram S., “Statistical mechanics of cellular automata”, Rev. Modern Phys., 55 (1983), 601–644 | DOI | MR | Zbl