$\mathfrak{spo}(2|2)$-Equivariant Quantizations on the Supercircle $S^{1|2}$
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the space of differential operators $\mathcal{D}_{\lambda\mu}$ acting between $\lambda$- and $\mu$-densities defined on $S^{1|2}$ endowed with its standard contact structure. This contact structure allows one to define a filtration on $\mathcal{D}_{\lambda\mu}$ which is finer than the classical one, obtained by writting a differential operator in terms of the partial derivatives with respect to the different coordinates. The space $\mathcal{D}_{\lambda\mu}$ and the associated graded space of symbols $\mathcal{S}_{\delta}$ ($\delta=\mu-\lambda$) can be considered as $\mathfrak{spo}(2|2)$-modules, where $\mathfrak{spo}(2|2)$ is the Lie superalgebra of contact projective vector fields on $S^{1|2}$. We show in this paper that there is a unique isomorphism of $\mathfrak{spo}(2|2)$-modules between $\mathcal{S}_{\delta}$ and $\mathcal{D}_{\lambda\mu}$ that preserves the principal symbol (i.e.an {$\mathfrak{spo}(2|2)$-equivariant} quantization) for some values of $\delta$ called non-critical values. Moreover, we give an explicit formula for this isomorphism, extending in this way the results of [Mellouli N., SIGMA 5 (2009), 111, 11 pages] which were established for second-order differential operators. The method used here to build the $\mathfrak{spo}(2|2)$-equivariant quantization is the same as the one used in [Mathonet P., Radoux F., Lett. Math. Phys. 98 (2011), 311–331] to prove the existence of a $\mathfrak{pgl}(p+1|q)$-equivariant quantization on $\mathbb{R}^{p|q}$.
Keywords: equivariant quantization; supergeometry; contact geometry; orthosymplectic Lie superalgebra.
@article{SIGMA_2013_9_a54,
     author = {Najla Mellouli and Aboubacar Nibirantiza and Fabian Radoux},
     title = {$\mathfrak{spo}(2|2)${-Equivariant} {Quantizations} on the {Supercircle} $S^{1|2}$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a54/}
}
TY  - JOUR
AU  - Najla Mellouli
AU  - Aboubacar Nibirantiza
AU  - Fabian Radoux
TI  - $\mathfrak{spo}(2|2)$-Equivariant Quantizations on the Supercircle $S^{1|2}$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a54/
LA  - en
ID  - SIGMA_2013_9_a54
ER  - 
%0 Journal Article
%A Najla Mellouli
%A Aboubacar Nibirantiza
%A Fabian Radoux
%T $\mathfrak{spo}(2|2)$-Equivariant Quantizations on the Supercircle $S^{1|2}$
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a54/
%G en
%F SIGMA_2013_9_a54
Najla Mellouli; Aboubacar Nibirantiza; Fabian Radoux. $\mathfrak{spo}(2|2)$-Equivariant Quantizations on the Supercircle $S^{1|2}$. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a54/

[1] Berezin F. A., Introduction to superanalysis, Mathematical Physics and Applied Mathematics, 9, D. Reidel Publishing Co., Dordrecht, 1987 | MR | Zbl

[2] Boniver F., Hansoul S., Mathonet P., Poncin N., “Equivariant symbol calculus for differential operators acting on forms”, Lett. Math. Phys., 62 (2002), 219–232, arXiv: math.RT/0206213 | DOI | MR | Zbl

[3] Boniver F., Mathonet P., “I{FFT}-equivariant quantizations”, J. Geom. Phys., 56 (2006), 712–730, arXiv: math.RT/0109032 | DOI | MR | Zbl

[4] Bouarroudj S., “Projectively equivariant quantization map”, Lett. Math. Phys., 51 (2000), 265–274, arXiv: math.DG/0003054 | DOI | MR | Zbl

[5] Čap A., Šilhan J., “Equivariant quantizations for {AHS}-structures”, Adv. Math., 224 (2010), 1717–1734, arXiv: 0904.3278 | DOI | MR

[6] Duval C., Lecomte P., Ovsienko V., “Conformally equivariant quantization: existence and uniqueness”, Ann. Inst. Fourier (Grenoble), 49 (1999), 1999–2029, arXiv: math.DG/9902032 | DOI | MR | Zbl

[7] Fox D. J. F., “Projectively invariant star products”, Int. Math. Res. Pap., 2005, 461–510, arXiv: math.DG/0504596 | DOI | MR | Zbl

[8] Gargoubi H., Mellouli N., Ovsienko V., “Differential operators on supercircle: conformally equivariant quantization and symbol calculus”, Lett. Math. Phys., 79 (2007), 51–65, arXiv: math-ph/0610059 | DOI | MR | Zbl

[9] Hansoul S., “Projectively equivariant quantization for differential operators acting on forms”, Lett. Math. Phys., 70 (2004), 141–153 | DOI | MR | Zbl

[10] Hansoul S., “Existence of natural and projectively equivariant quantizations”, Adv. Math., 214 (2007), 832–864, arXiv: math.DG/0601518 | DOI | MR | Zbl

[11] Kac V. G., “Lie superalgebras”, Adv. Math., 26 (1977), 8–96 | DOI | MR | Zbl

[12] Lecomte P. B. A., “Classification projective des espaces d'opérateurs différentiels agissant sur les densités”, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 287–290 | DOI | MR | Zbl

[13] Lecomte P. B. A., “Towards projectively equivariant quantization”, Progr. Theoret. Phys. Suppl., 2001, no. 144, 125–132 | DOI | MR | Zbl

[14] Lecomte P. B. A., Ovsienko V. Yu., “Projectively equivariant symbol calculus”, Lett. Math. Phys., 49 (1999), 173–196, arXiv: math.DG/9809061 | DOI | MR | Zbl

[15] Leites D., Poletaeva E., Serganova V., “On {E}instein equations on manifolds and supermanifolds”, J. Nonlinear Math. Phys., 9 (2002), 394–425, arXiv: math.DG/0306209 | DOI | MR | Zbl

[16] Leuther T., Mathonet P., Radoux F., “One {${\mathfrak{osp}}(p+1,q+1|2r)$}-equivariant quantizations”, J. Geom. Phys., 62 (2012), 87–99, arXiv: 1107.1387 | DOI | MR | Zbl

[17] Leuther T., Radoux F., “Natural and projectively invariant quantizations on supermanifolds”, SIGMA, 7 (2011), 034, 12 pp., arXiv: 1010.0516 | DOI | MR | Zbl

[18] Mathonet P., Radoux F., “Natural and projectively equivariant quantizations by means of {C}artan connections”, Lett. Math. Phys., 72 (2005), 183–196, arXiv: math.DG/0606554 | DOI | MR | Zbl

[19] Mathonet P., Radoux F., “Cartan connections and natural and projectively equivariant quantizations”, J. Lond. Math. Soc. (2), 76 (2007), 87–104, arXiv: math.DG/0606556 | DOI | MR | Zbl

[20] Mathonet P., Radoux F., “On natural and conformally equivariant quantizations”, J. Lond. Math. Soc. (2), 80 (2009), 256–272, arXiv: 0707.1412 | DOI | MR | Zbl

[21] Mathonet P., Radoux F., “Existence of natural and conformally invariant quantizations of arbitrary symbols”, J. Nonlinear Math. Phys., 17 (2010), 539–556, arXiv: 0811.3710 | DOI | MR | Zbl

[22] Mathonet P., Radoux F., “Projectively equivariant quantizations over the superspace {${\mathbb R}^{p|q}$}”, Lett. Math. Phys., 98 (2011), 311–331, arXiv: 1003.3320 | DOI | MR | Zbl

[23] Mellouli N., “Second-order conformally equivariant quantization in dimension {$1|2$}”, SIGMA, 5 (2009), 111, 11 pp., arXiv: 0912.5190 | DOI | MR | Zbl

[24] Michel J.-P., Quantification conformément équivariante des fibrés supercotangents, Ph. D. thesis, Université de la Méditerranée - Aix-Marseille II, 2009 http://tel.archives-ouvertes.fr/tel-00425576

[25] Musson I. M., “On the center of the enveloping algebra of a classical simple {L}ie superalgebra”, J. Algebra, 193 (1997), 75–101 | DOI | MR | Zbl

[26] Pinczon G., “The enveloping algebra of the {L}ie superalgebra ${\mathrm osp}(1,2)$”, J. Algebra, 132 (1990), 219–242 | DOI | MR | Zbl

[27] Sergeev A., “The invariant polynomials on simple {L}ie superalgebras”, Represent. Theory, 3 (1999), 250–280, arXiv: math.RT/9810111 | DOI | MR | Zbl