@article{SIGMA_2013_9_a53,
author = {Jian-Rong Li and Evgeny Mukhin},
title = {Extended $T${-System} of {Type} $G_2$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a53/}
}
Jian-Rong Li; Evgeny Mukhin. Extended $T$-System of Type $G_2$. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a53/
[1] Chari V., Pressley A., “Quantum affine algebras”, Comm. Math. Phys., 142 (1991), 261–283 | DOI | MR | Zbl
[2] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[3] Chari V., Pressley A., “Minimal affinizations of representations of quantum groups: the nonsimply-laced case”, Lett. Math. Phys., 35 (1995), 99–114, arXiv: hep-th/9410036 | DOI | MR | Zbl
[4] Chari V., Pressley A., “Quantum affine algebras and their representations”, Representations of Groups (Banff, AB, 1994), CMS Conf. Proc., 16, Amer. Math. Soc., Providence, RI, 1995, 59–78, arXiv: hep-th/9411145 | MR | Zbl
[5] Chari V., Pressley A., “Factorization of representations of quantum affine algebras”, Modular Interfaces (Riverside, CA, 1995), AMS/IP Stud. Adv. Math., 4, Amer. Math. Soc., Providence, RI, 1997, 33–40 | MR | Zbl
[6] Cherednik I. V., “A new interpretation of Gel'fand–Tzetlin bases”, Duke Math. J., 54 (1987), 563–577 | DOI | MR | Zbl
[7] Drinfel'd V. G., “A new realization of Yangians and of quantum affine algebras”, Soviet Math. Dokl., 36 (1988), 212–216 | MR
[8] Frenkel E., Mukhin E., “Combinatorics of {$q$}-characters of finite-dimensional representations of quantum affine algebras”, Comm. Math. Phys., 216 (2001), 23–57, arXiv: math.QA/9911112 | DOI | MR | Zbl
[9] Frenkel E., Reshetikhin N., “The {$q$}-characters of representations of quantum affine algebras and deformations of {$\mathcal W$}-algebras”, Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999, 163–205, arXiv: math.QA/9810055 | DOI | MR | Zbl
[10] Hernandez D., “The {K}irillov–{R}eshetikhin conjecture and solutions of {$T$}-systems”, J. Reine Angew. Math., 596 (2006), 63–87, arXiv: math.QA/0501202 | DOI | MR | Zbl
[11] Hernandez D., “On minimal affinizations of representations of quantum groups”, Comm. Math. Phys., 276 (2007), 221–259, arXiv: math.QA/0607527 | DOI | MR | Zbl
[12] Hernandez D., Leclerc B., “Cluster algebras and quantum affine algebras”, Duke Math. J., 154 (2010), 265–341, arXiv: 0903.1452 | DOI | MR | Zbl
[13] Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., “Periodicities of $T$-systems and $Y$-systems, dilogarithm identities, and cluster algebras {I}: type {$B_r$}”, Publ. Res. Inst. Math. Sci., 49 (2013), 1–42, arXiv: 1001.1880 | DOI | MR | Zbl
[14] Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., “Periodicities of $T$-systems and $Y$-systems, dilogarithm identities, and cluster algebras {II}: types {$C_r$}, {$F_4$}, and {$G_2$}”, Publ. Res. Inst. Math. Sci., 49 (2013), 43–85, arXiv: 1001.1881 | DOI | MR | Zbl
[15] Kirillov A. N., Reshetikhin N. Yu., “Representations of {Y}angians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple {L}ie algebras”, J. Soviet Math., 52 (1990), 3156–3164 | DOI | MR
[16] Kuniba A., Nakanishi T., Suzuki J., “Functional relations in solvable lattice models. I: Functional relations and representation theory”, Internat. J. Modern Phys. A, 9 (1994), 5215–5266, arXiv: hep-th/9309137 | DOI | MR | Zbl
[17] Kuniba A., Nakanishi T., Suzuki J., “$T$-systems and {$Y$}-systems in integrable systems”, J. Phys. A: Math. Theor., 44 (2011), 103001, 146 pp., arXiv: 1010.1344 | DOI | MR | Zbl
[18] Mukhin E., Young C. A. S., “Extended $T$-systems”, Selecta Math. (N.S.), 18 (2012), 591–631, arXiv: 1104.3094 | DOI | MR | Zbl
[19] Mukhin E., Young C. A. S., “Path description of type {B} {$q$}-characters”, Adv. Math., 231 (2012), 1119–1150, arXiv: 1103.5873 | DOI | MR | Zbl
[20] Nakajima H., “{$t$}-analogs of {$q$}-characters of {K}irillov–{R}eshetikhin modules of quantum affine algebras”, Represent. Theory, 7 (2003), 259–274, arXiv: math.QA/0204185 | DOI | MR | Zbl
[21] Nakajima H., “Quiver varieties and {$t$}-analogs of {$q$}-characters of quantum affine algebras”, Ann. of Math. (2), 160 (2004), 1057–1097, arXiv: math.QA/0105173 | DOI | MR
[22] Nazarov M., Tarasov V., “Representations of Yangians with Gelfand–Zetlin bases”, J. Reine Angew. Math., 496 (1998), 181–212, arXiv: q-alg/9502008 | DOI | MR | Zbl