@article{SIGMA_2013_9_a51,
author = {Alexander Bihlo and Jean-Christophe Nave},
title = {Invariant {Discretization} {Schemes} {Using} {Evolution{\textendash}Projection} {Techniques}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a51/}
}
TY - JOUR AU - Alexander Bihlo AU - Jean-Christophe Nave TI - Invariant Discretization Schemes Using Evolution–Projection Techniques JO - Symmetry, integrability and geometry: methods and applications PY - 2013 VL - 9 UR - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a51/ LA - en ID - SIGMA_2013_9_a51 ER -
Alexander Bihlo; Jean-Christophe Nave. Invariant Discretization Schemes Using Evolution–Projection Techniques. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a51/
[1] Bakirova M. I., Dorodnitsyn V. A., Kozlov R. V., “Symmetry-preserving difference schemes for some heat transfer equations”, J. Phys. A: Math. Gen., 30 (1997), 8139–8155, arXiv: math.NA/0402367 | DOI | MR | Zbl
[2] Bihlo A., Popovych R. O., “Invariant discretization schemes for the shallow-water equations”, SIAM J. Sci. Comput., 34 (2012), B810–B839, arXiv: 1201.0498 | DOI | MR | Zbl
[3] Bluman G. W., Kumei S., Symmetries and differential equations, Applied Mathematical Sciences, 81, Springer-Verlag, New York, 1989 | DOI | MR | Zbl
[4] Bridges T. J., Reich S., “Numerical methods for {H}amiltonian {PDE}s”, J. Phys. A: Math. Gen., 39 (2006), 5287–5320 | DOI | MR | Zbl
[5] Budd C., Dorodnitsyn V., “Symmetry-adapted moving mesh schemes for the nonlinear {S}chrödinger equation”, J. Phys. A: Math. Gen., 34 (2001), 10387–10400 | DOI | MR | Zbl
[6] Budd C. J., Huang W., Russell R. D., “Moving mesh methods for problems with blow-up”, SIAM J. Sci. Comput., 17 (1996), 305–327 | DOI | MR | Zbl
[7] Budd C. J., Huang W., Russell R. D., “Adaptivity with moving grids”, Acta Numer., 18 (2009), 111–241 | DOI | MR | Zbl
[8] Budd C. J., Iserles A., “Geometric integration: numerical solution of differential equations on manifolds”, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 945–956 | DOI | MR | Zbl
[9] Cheh J., Olver P. J., Pohjanpelto J., “Algorithms for differential invariants of symmetry groups of differential equations”, Found. Comput. Math., 8 (2008), 501–532 | DOI | MR | Zbl
[10] Chhay M., Hamdouni A., “A new construction for invariant numerical schemes using moving frames”, C. R. Mécanique, 338 (2010), 97–101 | DOI | Zbl
[11] Chhay M., Hoarau E., Hamdouni A., Sagaut P., “Comparison of some {L}ie-symmetry-based integrators”, J. Comput. Phys., 230 (2011), 2174–2188 | DOI | MR | Zbl
[12] Dawes A. S., “Invariant numerical methods”, Internat. J. Numer. Methods Fluids, 56 (2008), 1185–1191 | DOI | MR | Zbl
[13] Dorodnitsyn V., Applications of {L}ie groups to difference equations, Differential and Integral Equations and Their Applications, 8, CRC Press, Boca Raton, FL, 2011 | MR
[14] Dorodnitsyn V., Kozlov R., “A heat transfer with a source: the complete set of invariant difference schemes”, J. Nonlinear Math. Phys., 10 (2003), 16–50, arXiv: math.AP/0309139 | DOI | MR
[15] Fels M., Olver P. J., “Moving coframes. I: {A} practical algorithm”, Acta Appl. Math., 51 (1998), 161–213 | DOI | MR
[16] Fels M., Olver P. J., “Moving coframes. II: {R}egularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl
[17] Fornberg B., A practical guide to pseudospectral methods, Cambridge Monographs on Applied and Computational Mathematics, 1, Cambridge University Press, Cambridge, 1996 | DOI | MR
[18] Frank J., Gottwald G., Reich S., “A {H}amiltonian particle-mesh method for the rotating shallow-water equations”, Meshfree Methods for Partial Differential Equations ({B}onn, 2001), Lect. Notes Comput. Sci. Eng., 26, eds. M. Griebel, M. A. Schweitzer, T. J. Barth, M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, T., Springer, Berlin, 2003, 131–142 | DOI | MR
[19] Hairer E., Lubich C., Wanner G., Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, Springer Series in Computational Mathematics, 31, 2nd ed., Springer-Verlag, Berlin, 2006 | MR | Zbl
[20] Huang W., Russell R. D., Adaptive moving mesh methods, Applied Mathematical Sciences, 174, Springer, New York, 2011 | DOI | MR | Zbl
[21] Kim P., “Invariantization of numerical schemes using moving frames”, BIT, 47 (2007), 525–546 | DOI | MR | Zbl
[22] Kim P., “Invariantization of the {C}rank–{N}icolson method for {B}urgers' equation”, Phys. D, 237 (2008), 243–254 | DOI | MR | Zbl
[23] Kim P., Olver P. J., “Geometric integration via multi-space”, Regul. Chaotic Dyn., 9 (2004), 213–226 | DOI | MR | Zbl
[24] Leimkuhler B., Reich S., Simulating {H}amiltonian dynamics, Cambridge Monographs on Applied and Computational Mathematics, 14, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[25] Levi D., Winternitz P., “Continuous symmetries of difference equations”, J. Phys. A: Math. Gen., 39 (2006), R1–R63, arXiv: nlin.SI/0502004 | DOI | MR | Zbl
[26] Olver P. J., Applications of {L}ie groups to differential equations, Graduate Texts in Mathematics, 107, 2nd ed., Springer-Verlag, New York, 1993 | DOI | MR | Zbl
[27] Olver P. J., “Geometric foundations of numerical algorithms and symmetry”, Appl. Algebra Engrg. Comm. Comput., 11 (2001), 417–436 | DOI | MR | Zbl
[28] Olver P. J., “Generating differential invariants”, J. Math. Anal. Appl., 333 (2007), 450–471 | DOI | MR | Zbl
[29] Ovsiannikov L. V., Group analysis of differential equations, Academic Press Inc., New York, 1982 | MR | Zbl
[30] Rebelo R., Valiquette F., “Symmetry preserving numerical schemes for partial differential equations and their numerical tests”, J. Difference Equ. Appl., 19 (2013), 738–757, arXiv: 1110.5921 | DOI | MR | Zbl
[31] Sommer M., Névir P., “A conservative scheme for the shallow-water system on a staggered geodesic grid based on a Nambu representation”, Q. J. R. Meteorol. Soc., 135 (2009), 485–494 | DOI
[32] Staniforth A., Côté J., “Semi-Lagrangian integration schemes for atmospheric models – a review”, Mon. Weather Rev., 119 (1991), 2206–2223 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[33] Stensrud D. J., Parameterization schemes: keys to understanding numerical weather prediction models, Cambridge University Press, Cambridge, 2007 | Zbl
[34] Stull R. B., An introduction to boundary layer meteorology, Atmospheric Sciences Library, 13, Kluwer Academic Publishers, Dortrecht, 1988
[35] Valiquette F., Winternitz P., “Discretization of partial differential equations preserving their physical symmetries”, J. Phys. A: Math. Gen., 38 (2005), 9765–9783, arXiv: math-ph/0507061 | DOI | MR | Zbl