Invariant Discretization Schemes Using Evolution–Projection Techniques
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Finite difference discretization schemes preserving a subgroup of the maximal Lie invariance group of the one-dimensional linear heat equation are determined. These invariant schemes are constructed using the invariantization procedure for non-invariant schemes of the heat equation in computational coordinates. We propose a new methodology for handling moving discretization grids which are generally indispensable for invariant numerical schemes. The idea is to use the invariant grid equation, which determines the locations of the grid point at the next time level only for a single integration step and then to project the obtained solution to the regular grid using invariant interpolation schemes. This guarantees that the scheme is invariant and allows one to work on the simpler stationary grids. The discretization errors of the invariant schemes are established and their convergence rates are estimated. Numerical tests are carried out to shed some light on the numerical properties of invariant discretization schemes using the proposed evolution-projection strategy.
Keywords: invariant numerical schemes; moving frame; evolution-projection method; heat equation.
@article{SIGMA_2013_9_a51,
     author = {Alexander Bihlo and Jean-Christophe Nave},
     title = {Invariant {Discretization} {Schemes} {Using} {Evolution{\textendash}Projection} {Techniques}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a51/}
}
TY  - JOUR
AU  - Alexander Bihlo
AU  - Jean-Christophe Nave
TI  - Invariant Discretization Schemes Using Evolution–Projection Techniques
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a51/
LA  - en
ID  - SIGMA_2013_9_a51
ER  - 
%0 Journal Article
%A Alexander Bihlo
%A Jean-Christophe Nave
%T Invariant Discretization Schemes Using Evolution–Projection Techniques
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a51/
%G en
%F SIGMA_2013_9_a51
Alexander Bihlo; Jean-Christophe Nave. Invariant Discretization Schemes Using Evolution–Projection Techniques. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a51/

[1] Bakirova M. I., Dorodnitsyn V. A., Kozlov R. V., “Symmetry-preserving difference schemes for some heat transfer equations”, J. Phys. A: Math. Gen., 30 (1997), 8139–8155, arXiv: math.NA/0402367 | DOI | MR | Zbl

[2] Bihlo A., Popovych R. O., “Invariant discretization schemes for the shallow-water equations”, SIAM J. Sci. Comput., 34 (2012), B810–B839, arXiv: 1201.0498 | DOI | MR | Zbl

[3] Bluman G. W., Kumei S., Symmetries and differential equations, Applied Mathematical Sciences, 81, Springer-Verlag, New York, 1989 | DOI | MR | Zbl

[4] Bridges T. J., Reich S., “Numerical methods for {H}amiltonian {PDE}s”, J. Phys. A: Math. Gen., 39 (2006), 5287–5320 | DOI | MR | Zbl

[5] Budd C., Dorodnitsyn V., “Symmetry-adapted moving mesh schemes for the nonlinear {S}chrödinger equation”, J. Phys. A: Math. Gen., 34 (2001), 10387–10400 | DOI | MR | Zbl

[6] Budd C. J., Huang W., Russell R. D., “Moving mesh methods for problems with blow-up”, SIAM J. Sci. Comput., 17 (1996), 305–327 | DOI | MR | Zbl

[7] Budd C. J., Huang W., Russell R. D., “Adaptivity with moving grids”, Acta Numer., 18 (2009), 111–241 | DOI | MR | Zbl

[8] Budd C. J., Iserles A., “Geometric integration: numerical solution of differential equations on manifolds”, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 945–956 | DOI | MR | Zbl

[9] Cheh J., Olver P. J., Pohjanpelto J., “Algorithms for differential invariants of symmetry groups of differential equations”, Found. Comput. Math., 8 (2008), 501–532 | DOI | MR | Zbl

[10] Chhay M., Hamdouni A., “A new construction for invariant numerical schemes using moving frames”, C. R. Mécanique, 338 (2010), 97–101 | DOI | Zbl

[11] Chhay M., Hoarau E., Hamdouni A., Sagaut P., “Comparison of some {L}ie-symmetry-based integrators”, J. Comput. Phys., 230 (2011), 2174–2188 | DOI | MR | Zbl

[12] Dawes A. S., “Invariant numerical methods”, Internat. J. Numer. Methods Fluids, 56 (2008), 1185–1191 | DOI | MR | Zbl

[13] Dorodnitsyn V., Applications of {L}ie groups to difference equations, Differential and Integral Equations and Their Applications, 8, CRC Press, Boca Raton, FL, 2011 | MR

[14] Dorodnitsyn V., Kozlov R., “A heat transfer with a source: the complete set of invariant difference schemes”, J. Nonlinear Math. Phys., 10 (2003), 16–50, arXiv: math.AP/0309139 | DOI | MR

[15] Fels M., Olver P. J., “Moving coframes. I: {A} practical algorithm”, Acta Appl. Math., 51 (1998), 161–213 | DOI | MR

[16] Fels M., Olver P. J., “Moving coframes. II: {R}egularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl

[17] Fornberg B., A practical guide to pseudospectral methods, Cambridge Monographs on Applied and Computational Mathematics, 1, Cambridge University Press, Cambridge, 1996 | DOI | MR

[18] Frank J., Gottwald G., Reich S., “A {H}amiltonian particle-mesh method for the rotating shallow-water equations”, Meshfree Methods for Partial Differential Equations ({B}onn, 2001), Lect. Notes Comput. Sci. Eng., 26, eds. M. Griebel, M. A. Schweitzer, T. J. Barth, M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, T., Springer, Berlin, 2003, 131–142 | DOI | MR

[19] Hairer E., Lubich C., Wanner G., Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, Springer Series in Computational Mathematics, 31, 2nd ed., Springer-Verlag, Berlin, 2006 | MR | Zbl

[20] Huang W., Russell R. D., Adaptive moving mesh methods, Applied Mathematical Sciences, 174, Springer, New York, 2011 | DOI | MR | Zbl

[21] Kim P., “Invariantization of numerical schemes using moving frames”, BIT, 47 (2007), 525–546 | DOI | MR | Zbl

[22] Kim P., “Invariantization of the {C}rank–{N}icolson method for {B}urgers' equation”, Phys. D, 237 (2008), 243–254 | DOI | MR | Zbl

[23] Kim P., Olver P. J., “Geometric integration via multi-space”, Regul. Chaotic Dyn., 9 (2004), 213–226 | DOI | MR | Zbl

[24] Leimkuhler B., Reich S., Simulating {H}amiltonian dynamics, Cambridge Monographs on Applied and Computational Mathematics, 14, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[25] Levi D., Winternitz P., “Continuous symmetries of difference equations”, J. Phys. A: Math. Gen., 39 (2006), R1–R63, arXiv: nlin.SI/0502004 | DOI | MR | Zbl

[26] Olver P. J., Applications of {L}ie groups to differential equations, Graduate Texts in Mathematics, 107, 2nd ed., Springer-Verlag, New York, 1993 | DOI | MR | Zbl

[27] Olver P. J., “Geometric foundations of numerical algorithms and symmetry”, Appl. Algebra Engrg. Comm. Comput., 11 (2001), 417–436 | DOI | MR | Zbl

[28] Olver P. J., “Generating differential invariants”, J. Math. Anal. Appl., 333 (2007), 450–471 | DOI | MR | Zbl

[29] Ovsiannikov L. V., Group analysis of differential equations, Academic Press Inc., New York, 1982 | MR | Zbl

[30] Rebelo R., Valiquette F., “Symmetry preserving numerical schemes for partial differential equations and their numerical tests”, J. Difference Equ. Appl., 19 (2013), 738–757, arXiv: 1110.5921 | DOI | MR | Zbl

[31] Sommer M., Névir P., “A conservative scheme for the shallow-water system on a staggered geodesic grid based on a Nambu representation”, Q. J. R. Meteorol. Soc., 135 (2009), 485–494 | DOI

[32] Staniforth A., Côté J., “Semi-Lagrangian integration schemes for atmospheric models – a review”, Mon. Weather Rev., 119 (1991), 2206–2223 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[33] Stensrud D. J., Parameterization schemes: keys to understanding numerical weather prediction models, Cambridge University Press, Cambridge, 2007 | Zbl

[34] Stull R. B., An introduction to boundary layer meteorology, Atmospheric Sciences Library, 13, Kluwer Academic Publishers, Dortrecht, 1988

[35] Valiquette F., Winternitz P., “Discretization of partial differential equations preserving their physical symmetries”, J. Phys. A: Math. Gen., 38 (2005), 9765–9783, arXiv: math-ph/0507061 | DOI | MR | Zbl