@article{SIGMA_2013_9_a50,
author = {Adam Rennie and Andrzej Sitarz and Makoto Yamashita},
title = {Twisted {Cyclic} {Cohomology} and {Modular} {Fredholm} {Modules}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a50/}
}
TY - JOUR AU - Adam Rennie AU - Andrzej Sitarz AU - Makoto Yamashita TI - Twisted Cyclic Cohomology and Modular Fredholm Modules JO - Symmetry, integrability and geometry: methods and applications PY - 2013 VL - 9 UR - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a50/ LA - en ID - SIGMA_2013_9_a50 ER -
Adam Rennie; Andrzej Sitarz; Makoto Yamashita. Twisted Cyclic Cohomology and Modular Fredholm Modules. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a50/
[1] Carey A. L., Gayral V., Rennie A., Sukochev F. A., “Index theory for locally compact noncommutative geometries”, Mem. Amer. Math. Soc. (to appear) , arXiv: 1107.0805
[2] Carey A. L., Phillips J., “Spectral flow in {F}redholm modules, eta invariants and the {JLO} cocycle”, $K$-Theory, 31 (2004), 135–194, arXiv: math.KT/0308161 | DOI | MR | Zbl
[3] Carey A. L., Phillips J., Rennie A., Sukochev F. A., “The local index formula in semifinite von {N}eumann algebras. II: {T}he even case”, Adv. Math., 202 (2006), 517–554, arXiv: math.OA/0411021 | DOI | MR | Zbl
[4] Connes A., Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994 | MR | Zbl
[5] Connes A., Cuntz J., “Quasi homomorphismes, cohomologie cyclique et positivité”, Comm. Math. Phys., 114 (1988), 515–526 | DOI | MR | Zbl
[6] Connes A., Moscovici H., “Type {III} and spectral triples”, Traces in Number Theory, Geometry and Quantum Fields, Aspects Math., E38, Friedr. Vieweg, Wiesbaden, 2008, 57–71, arXiv: math.OA/0609703 | MR
[7] D{a̧}browski L., Landi G., Sitarz A., van Suijlekom W., Várilly J. C., “The {D}irac operator on {${\rm SU}_q(2)$}”, Comm. Math. Phys., 259 (2005), 729–759, arXiv: math.OA/0411609 | DOI | MR
[8] Fathizadeh F., Khalkhali M., “The algebra of formal twisted pseudodifferential symbols and a noncommutative residue”, Lett. Math. Phys., 94 (2010), 41–61, arXiv: 0810.0484 | DOI | MR
[9] Gracia-Bondía J. M., Várilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston Inc., Boston, MA, 2001 | MR | Zbl
[10] Hadfield T., “Twisted cyclic homology of all {P}odleś quantum spheres”, J. Geom. Phys., 57 (2007), 339–351, arXiv: math.QA/0405243 | DOI | MR | Zbl
[11] Hadfield T., Krähmer U., “Twisted homology of quantum {$\rm SL(2)$}, {P}art II”, J. K-Theory, 6 (2010), 69–98, arXiv: 0711.4102 | DOI | MR | Zbl
[12] Kaad J., Senior R., “A twisted spectral triple for quantum {${\rm SU}(2)$}”, J. Geom. Phys., 62 (2012), 731–739, arXiv: 1109.2326 | DOI | MR | Zbl
[13] Krähmer U., Rennie A., Senior R., “A residue formula for the fundamental {H}ochschild 3-cocycle for {${\rm SU}_q(2)$}”, J. Lie Theory, 22 (2012), 557–585, arXiv: 1105.5366 | MR
[14] Masuda T., Nakagami Y., Watanabe J., “Noncommutative differential geometry on the quantum {${\rm SU}(2)$}. I: {A}n algebraic viewpoint”, $K$-Theory, 4 (1990), 157–180 | DOI | MR | Zbl
[15] Neshveyev S., Tuset L., “A local index formula for the quantum sphere”, Comm. Math. Phys., 254 (2005), 323–341, arXiv: math.QA/0309275 | DOI | MR | Zbl
[16] Neshveyev S., Tuset L., “Hopf algebra equivariant cyclic cohomology, {$K$}-theory and index formulas”, $K$-Theory, 31 (2004), 357–378, arXiv: math.KT/0304001 | DOI | MR | Zbl
[17] Rennie A., Senior R., “The resolvent cocycle in twisted cyclic cohomology and a local index formula for the Podleś sphere”, J. Noncommut. Geom. (to appear) , arXiv: 1111.5862
[18] Sheu A. J. L., “Quantization of the {P}oisson {${\rm SU}(2)$} and its {P}oisson homogeneous space — the {$2$}-sphere”, Comm. Math. Phys., 135 (1991), 217–232 | DOI | MR | Zbl
[19] Takesaki M., Theory of operator algebras, v. II, Encyclopaedia of Mathematical Sciences, 125, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl
[20] van Suijlekom W., D{a̧}browski L., Landi G., Sitarz A., Várilly J. C., “The local index formula for {${\rm SU}_q(2)$}”, $K$-Theory, 35 (2005), 375–394, arXiv: math.OA/0501287 | DOI | MR | Zbl
[21] Wagner E., “On the noncommutative spin geometry of the standard {P}odleś sphere and index computations”, J. Geom. Phys., 59 (2009), 998–1016, arXiv: 0707.3403 | DOI | MR | Zbl