Twisted Cyclic Cohomology and Modular Fredholm Modules
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Connes and Cuntz showed in [Comm. Math. Phys. 114 (1988), 515–526] that suitable cyclic cocycles can be represented as Chern characters of finitely summable semifinite Fredholm modules. We show an analogous result in twisted cyclic cohomology using Chern characters of modular Fredholm modules. We present examples of modular Fredholm modules arising from Podleś spheres and from ${\rm SU}_q(2)$.
Keywords: twisted cyclic cohomology; spectral triple; modular theory; KMS weight.
@article{SIGMA_2013_9_a50,
     author = {Adam Rennie and Andrzej Sitarz and Makoto Yamashita},
     title = {Twisted {Cyclic} {Cohomology} and {Modular} {Fredholm} {Modules}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a50/}
}
TY  - JOUR
AU  - Adam Rennie
AU  - Andrzej Sitarz
AU  - Makoto Yamashita
TI  - Twisted Cyclic Cohomology and Modular Fredholm Modules
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a50/
LA  - en
ID  - SIGMA_2013_9_a50
ER  - 
%0 Journal Article
%A Adam Rennie
%A Andrzej Sitarz
%A Makoto Yamashita
%T Twisted Cyclic Cohomology and Modular Fredholm Modules
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a50/
%G en
%F SIGMA_2013_9_a50
Adam Rennie; Andrzej Sitarz; Makoto Yamashita. Twisted Cyclic Cohomology and Modular Fredholm Modules. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a50/

[1] Carey A. L., Gayral V., Rennie A., Sukochev F. A., “Index theory for locally compact noncommutative geometries”, Mem. Amer. Math. Soc. (to appear) , arXiv: 1107.0805

[2] Carey A. L., Phillips J., “Spectral flow in {F}redholm modules, eta invariants and the {JLO} cocycle”, $K$-Theory, 31 (2004), 135–194, arXiv: math.KT/0308161 | DOI | MR | Zbl

[3] Carey A. L., Phillips J., Rennie A., Sukochev F. A., “The local index formula in semifinite von {N}eumann algebras. II: {T}he even case”, Adv. Math., 202 (2006), 517–554, arXiv: math.OA/0411021 | DOI | MR | Zbl

[4] Connes A., Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994 | MR | Zbl

[5] Connes A., Cuntz J., “Quasi homomorphismes, cohomologie cyclique et positivité”, Comm. Math. Phys., 114 (1988), 515–526 | DOI | MR | Zbl

[6] Connes A., Moscovici H., “Type {III} and spectral triples”, Traces in Number Theory, Geometry and Quantum Fields, Aspects Math., E38, Friedr. Vieweg, Wiesbaden, 2008, 57–71, arXiv: math.OA/0609703 | MR

[7] D{a̧}browski L., Landi G., Sitarz A., van Suijlekom W., Várilly J. C., “The {D}irac operator on {${\rm SU}_q(2)$}”, Comm. Math. Phys., 259 (2005), 729–759, arXiv: math.OA/0411609 | DOI | MR

[8] Fathizadeh F., Khalkhali M., “The algebra of formal twisted pseudodifferential symbols and a noncommutative residue”, Lett. Math. Phys., 94 (2010), 41–61, arXiv: 0810.0484 | DOI | MR

[9] Gracia-Bondía J. M., Várilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston Inc., Boston, MA, 2001 | MR | Zbl

[10] Hadfield T., “Twisted cyclic homology of all {P}odleś quantum spheres”, J. Geom. Phys., 57 (2007), 339–351, arXiv: math.QA/0405243 | DOI | MR | Zbl

[11] Hadfield T., Krähmer U., “Twisted homology of quantum {$\rm SL(2)$}, {P}art II”, J. K-Theory, 6 (2010), 69–98, arXiv: 0711.4102 | DOI | MR | Zbl

[12] Kaad J., Senior R., “A twisted spectral triple for quantum {${\rm SU}(2)$}”, J. Geom. Phys., 62 (2012), 731–739, arXiv: 1109.2326 | DOI | MR | Zbl

[13] Krähmer U., Rennie A., Senior R., “A residue formula for the fundamental {H}ochschild 3-cocycle for {${\rm SU}_q(2)$}”, J. Lie Theory, 22 (2012), 557–585, arXiv: 1105.5366 | MR

[14] Masuda T., Nakagami Y., Watanabe J., “Noncommutative differential geometry on the quantum {${\rm SU}(2)$}. I: {A}n algebraic viewpoint”, $K$-Theory, 4 (1990), 157–180 | DOI | MR | Zbl

[15] Neshveyev S., Tuset L., “A local index formula for the quantum sphere”, Comm. Math. Phys., 254 (2005), 323–341, arXiv: math.QA/0309275 | DOI | MR | Zbl

[16] Neshveyev S., Tuset L., “Hopf algebra equivariant cyclic cohomology, {$K$}-theory and index formulas”, $K$-Theory, 31 (2004), 357–378, arXiv: math.KT/0304001 | DOI | MR | Zbl

[17] Rennie A., Senior R., “The resolvent cocycle in twisted cyclic cohomology and a local index formula for the Podleś sphere”, J. Noncommut. Geom. (to appear) , arXiv: 1111.5862

[18] Sheu A. J. L., “Quantization of the {P}oisson {${\rm SU}(2)$} and its {P}oisson homogeneous space — the {$2$}-sphere”, Comm. Math. Phys., 135 (1991), 217–232 | DOI | MR | Zbl

[19] Takesaki M., Theory of operator algebras, v. II, Encyclopaedia of Mathematical Sciences, 125, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl

[20] van Suijlekom W., D{a̧}browski L., Landi G., Sitarz A., Várilly J. C., “The local index formula for {${\rm SU}_q(2)$}”, $K$-Theory, 35 (2005), 375–394, arXiv: math.OA/0501287 | DOI | MR | Zbl

[21] Wagner E., “On the noncommutative spin geometry of the standard {P}odleś sphere and index computations”, J. Geom. Phys., 59 (2009), 998–1016, arXiv: 0707.3403 | DOI | MR | Zbl