On the $N$-Solitons Solutions in the Novikov–Veselov Equation
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct the $N$-solitons solution in the Novikov–Veselov equation from the extended Moutard transformation and the Pfaffian structure. Also, the corresponding wave functions are obtained explicitly. As a result, the property characterizing the $N$-solitons wave function is proved using the Pfaffian expansion. This property corresponding to the discrete scattering data for $N$-solitons solution is obtained in [arXiv:0912.2155] from the $\overline\partial$-dressing method.
Keywords: Novikov–Veselov equation; $N$-solitons solutions; Pfaffian expansion; wave functions.
@article{SIGMA_2013_9_a5,
     author = {Jen-Hsu Chang},
     title = {On the $N${-Solitons} {Solutions} in the {Novikov{\textendash}Veselov} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a5/}
}
TY  - JOUR
AU  - Jen-Hsu Chang
TI  - On the $N$-Solitons Solutions in the Novikov–Veselov Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a5/
LA  - en
ID  - SIGMA_2013_9_a5
ER  - 
%0 Journal Article
%A Jen-Hsu Chang
%T On the $N$-Solitons Solutions in the Novikov–Veselov Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a5/
%G en
%F SIGMA_2013_9_a5
Jen-Hsu Chang. On the $N$-Solitons Solutions in the Novikov–Veselov Equation. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a5/

[1] Athorne C., Nimmo J. J. C., “On the Moutard transformation for integrable partial differential equations”, Inverse Problems, 7 (1991), 809–826 | DOI | MR | Zbl

[2] Basalaev M. Yu., Dubrovsky V. G., Topovsky A. V., New exact solutions with constant asymptotic values at infinity of the NVN integrable nonlinear evolution equation via $\overline{\partial}$-dressing method, arXiv: 0912.2155

[3] Bogdanov L. V., “Veselov–Novikov equation as a natural two-dimensional generalization of the Korteweg-de Vries equation”, Theoret. Math. Phys., 70 (1987), 219–223 | DOI | MR | Zbl

[4] Chang J. H., “The Gould–Hopper polynomials in the Novikov–Veselov equation”, J. Math. Phys., 52 (2011), 092703, 15 pp., arXiv: 1011.1614 | DOI | MR

[5] Dubrovin B. A., Krichever I. M., Novikov S. P., “The Schrödinger equation in a periodic field and Riemann surfaces”, Sov. Math. Dokl., 17 (1976), 947–952

[6] Dubrovsky V. G., Formusatik I. B., “New lumps of Veselov–Novikov integrable nonlinear equation and new exact rational potentials of two-dimensional stationary Schrödinger equation via $\overline{\partial}$-dressing method”, Phys. Lett. A, 313 (2003), 68–76 | DOI | MR | Zbl

[7] Dubrovsky V. G., Formusatik I. B., “The construction of exact rational solutions with constant asymptotic values at infinity of two-dimensional NVN integrable nonlinear evolution equations via the $\overline{\partial}$-dressing method”, J. Phys. A: Math. Gen., 34 (2001), 1837–1851 | DOI | MR | Zbl

[8] Grinevich P. G., “Rational solitons of the Veselov–Novikov equations are reflectionless two-dimensional potentials at fixed energy”, Theoret. Math. Phys., 69 (1986), 1170–1172 | DOI | MR | Zbl

[9] Grinevich P. G., Manakov S. V., “Inverse scattering problem for the two-dimensional Schrödinger operator, the $\overline{\partial}$-method and nonlinear equations”, Funct. Anal. Appl., 20 (1986), 94–103 | DOI | MR | Zbl

[10] Grinevich P. G., Mironov A. E., Novikov S. P., New reductions and nonlinear systems for 2D Schrödinger operators, arXiv: 1001.4300

[11] Hirota R., The direct method in soliton theory, Cambridge Tracts in Mathematics, 155, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[12] Hu H. C., Lou S. Y., “Construction of the Darboux transformaiton and solutions to the modified Nizhnik–Novikov–Veselov equation”, Chinese Phys. Lett., 21 (2004), 2073–2076 | DOI

[13] Hu H. C., Lou S. Y., Liu Q. P., “Darboux transformation and variable separation approach: the Nizhnik–Novikov–Veselov equation”, Chinese Phys. Lett., 20 (2003), 1413–1415, arXiv: nlin.SI/0210012 | DOI

[14] Ishikawa M., Wakayama M., “Applications of minor-summation formula. II: Pfaffians and Schur polynomials”, J. Combin. Theory Ser. A, 88 (1999), 136–157 | DOI | MR | Zbl

[15] Kaptsov O. V., Shan'ko Yu. V., Trilinear representation and the Moutard transformation for the Tzitzéica equation, arXiv: solv-int/9704014

[16] Kodama Y., “KP solitons in shallow water”, J. Phys. A: Math. Gen., 43 (2010), 434004, 54 pp., arXiv: 1004.4607 | DOI | MR | Zbl

[17] Kodama Y., Maruno K., “$N$-soliton solutions to the DKP equation and Weyl group actions”, J. Phys. A: Math. Gen., 39 (2006), 4063–4086, arXiv: nlin.SI/0602031 | DOI | MR | Zbl

[18] Kodama Y., Williams L. K., KP solitons and total positivity for the Grassmannian, arXiv: 1106.0023

[19] Kodama Y., Williams L. K., “KP solitons, total positivity, and cluster algebras”, Proc. Natl. Acad. Sci. USA, 108 (2011), 8984–8989, arXiv: 1105.4170 | DOI | MR

[20] Konopelchenko B. G., Introduction to multidimensional integrable equations. The inverse spectral transform in $2+1$ dimensions, Plenum Press, New York, 1992 | MR | Zbl

[21] Konopelchenko B. G., Landolfi G., “Induced surfaces and their integrable dynamics. II: Generalized Weierstrass representations in 4D spaces and deformations via DS hierarchy”, Stud. Appl. Math., 104 (2000), 129–169 | DOI | MR | Zbl

[22] Krichever I. M., “A characterization of Prym varieties”, Int. Math. Res. Not., 2006 (2006), 81476, 36 pp., arXiv: math.AG/0506238 | MR | Zbl

[23] Liu S. Q., Wu C. Z., Zhang Y., “On the Drinfeld–Sokolov hierarchies of $D$ type”, Int. Math. Res. Not., 2011 (2011), 1952–1996, arXiv: 0912.5273 | MR | Zbl

[24] Manakov S. V., “The method of the inverse scattering problem, and two-dimensional evolution equations”, Russian Math. Surveys, 31:5 (1976), 245–246 | MR | Zbl

[25] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991 | DOI | MR

[26] Mironov A. E., “A relationship between symmetries of the Tzitzeica equation and the Veselov–Novikov hierarchy”, Math. Notes, 82 (2007), 569–572 | DOI | MR | Zbl

[27] Mironov A. E., “Finite-gap minimal Lagrangian surfaces in $\mathbb{C}\mathrm{P}^2$”, Riemann Surfaces, Harmonic Maps and Visualization, OCAMI Stud., 3, Osaka Munic. Univ. Press, Osaka, 2010, 185–196, arXiv: 1005.3402 | MR | Zbl

[28] Mironov A. E., “The Veselov–Novikov hierarchy of equations, and integrable deformations of minimal Lagrangian tori in $\mathbb{C}\mathrm{P}^2$”, Sib. Electron. Math. Rep., 1 (2004), 38–46, arXiv: math.DG/0607700 | MR | Zbl

[29] Moutard M., “Note sur les équations différentielles linéaires du second ordre”, C.R. Acad. Sci. Paris, 80 (1875), 729–733

[30] Moutard M., “Sur la construction des équations de la forme $\frac1z\frac{\partial^2z}{\partial x\partial y}=\lambda(xy)$, qui admettent une intégrale générale explicite”, J. de. l'Éc. Polyt., 28 (1878), 1–12

[31] Nimmo J. J. C., “Darboux transformations in $(2 + 1)$-dimensions”, Applications of Analytic and Geometric Methods to Nonlinear Differential Equations (Exeter, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 413, Kluwer Acad. Publ., Dordrecht, 1993, 183–192 | MR | Zbl

[32] Nimmo J. J. C., “Hall–Littlewood symmetric functions and the BKP equation”, J. Phys. A: Math. Gen., 23 (1990), 751–760 | DOI | MR | Zbl

[33] Novikov S. P., “Two-dimensional Schrödinger operators in periodic fields”, J. Sov. Math., 28 (1985), 1–20 | DOI | Zbl

[34] Novikov S. P., Veselov A. P., “Two-dimensional Schrödinger operator: inverse scattering transform and evolutional equations”, Phys. D, 18 (1986), 267–273 | DOI | MR | Zbl

[35] Ohta Y., “Pfaffian solutions for the Veselov–Novikov equation”, J. Phys. Soc. Japan, 61 (1992), 3928–3933 | DOI | MR

[36] Orlov A. Yu., Shiota T., Takasaki K., Pfaffian structures and certain solutions to BKP hierarchies. I: Sums over partitions, arXiv: 1201.4518

[37] Shiota T., “Prym varieties and soliton equations”, Infinite-Dimensional Lie Algebras and Groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., 7, World Sci. Publ., Teaneck, NJ, 1989, 407–448 | MR

[38] Stembridge J. R., “Nonintersecting paths, Pfaffians, and plane partitions”, Adv. Math., 83 (1990), 96–131 | DOI | MR

[39] Taimanov I. A., Tsarev S. P., “Two-dimensional rational solitons and their blowup via the Moutard transformation”, Theoret. Math. Phys., 157 (2008), 1525–1541, arXiv: 0801.3225 | DOI | MR | Zbl

[40] Takasaki K., “Dispersionless Hirota equations of two-component BKP hierarchy”, SIGMA, 2 (2006), 057, 22 pp., arXiv: nlin.SI/0604003 | MR | Zbl

[41] Veselov A. P., Novikov S. P., “Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formulas and evolution equations”, Sov. Math. Dokl., 30 (1984), 588–591 | Zbl