A Connection Formula for the $q$-Confluent Hypergeometric Function
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show a connection formula for the $q$-confluent hypergeometric functions ${}_2\varphi_1(a,b;0;q,x)$. Combining our connection formula with Zhang's connection formula for ${}_2\varphi_0(a,b;-;q,x)$, we obtain the connection formula for the $q$-confluent hypergeometric equation in the matrix form. Also we obtain the connection formula of Kummer's confluent hypergeometric functions by taking the limit $q\to 1^{-}$ of our connection formula.
Keywords: $q$-Borel–Laplace transformation; $q$-difference equation; connection problem; $q$-confluent hypergeometric function.
@article{SIGMA_2013_9_a49,
     author = {Takeshi Morita},
     title = {A {Connection} {Formula} for the $q${-Confluent} {Hypergeometric} {Function}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a49/}
}
TY  - JOUR
AU  - Takeshi Morita
TI  - A Connection Formula for the $q$-Confluent Hypergeometric Function
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a49/
LA  - en
ID  - SIGMA_2013_9_a49
ER  - 
%0 Journal Article
%A Takeshi Morita
%T A Connection Formula for the $q$-Confluent Hypergeometric Function
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a49/
%G en
%F SIGMA_2013_9_a49
Takeshi Morita. A Connection Formula for the $q$-Confluent Hypergeometric Function. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a49/

[1] Birkhoff G.D., “The generalized Riemann problem for linear differential equations and the allied problems for linear difference and $q$-difference equations”, Proc. Amer. Acad. Arts Sci., 49 (1913), 521–568 | DOI | Zbl

[2] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[3] Gauss C. F., “Disquisitiones generales circa seriem infinitam ...”, Werke, v. 3, Königlichen Gesellschaft der Wissenschaften zu Göttingen, 1866, 123–162

[4] Morita T., “A connection formula of the {H}ahn–{E}xton {$q$}-{B}essel function”, SIGMA, 7 (2011), 115, 11 pp., arXiv: 1105.1998 | DOI | MR | Zbl

[5] Ohyama Y., A unified approach to $q$-special functions of the Laplace type, arXiv: 1103.5232

[6] Ramis J. P., Sauloy J., Zhang C., Local analytic classification of $q$-difference equations, arXiv: 0903.0853

[7] Watson G. N., “The continuation of functions defined by generalized hypergeometric series”, Trans. Camb. Phil. Soc., 21 (1910), 281–299 | Zbl

[8] Zhang C., “Remarks on some basic hypergeometric series”, Theory and Applications of Special Functions, Dev. Math., 13, Springer, New York, 2005, 479–491 | DOI | MR | Zbl

[9] Zhang C., J. Approx. Theory, 122 (2003), Sur les fonctions {$q$}-{B}essel de {J}ackson | DOI | MR

[10] Zhang C., “Une sommation discrète pour des équations aux {$q$}-différences linéaires et à coefficients analytiques: théorie générale et exemples”, Differential Equations and the {S}tokes Phenomenon, World Sci. Publ., River Edge, NJ, 2002, 309–329 | DOI | MR | Zbl