@article{SIGMA_2013_9_a49,
author = {Takeshi Morita},
title = {A {Connection} {Formula} for the $q${-Confluent} {Hypergeometric} {Function}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a49/}
}
Takeshi Morita. A Connection Formula for the $q$-Confluent Hypergeometric Function. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a49/
[1] Birkhoff G.D., “The generalized Riemann problem for linear differential equations and the allied problems for linear difference and $q$-difference equations”, Proc. Amer. Acad. Arts Sci., 49 (1913), 521–568 | DOI | Zbl
[2] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[3] Gauss C. F., “Disquisitiones generales circa seriem infinitam ...”, Werke, v. 3, Königlichen Gesellschaft der Wissenschaften zu Göttingen, 1866, 123–162
[4] Morita T., “A connection formula of the {H}ahn–{E}xton {$q$}-{B}essel function”, SIGMA, 7 (2011), 115, 11 pp., arXiv: 1105.1998 | DOI | MR | Zbl
[5] Ohyama Y., A unified approach to $q$-special functions of the Laplace type, arXiv: 1103.5232
[6] Ramis J. P., Sauloy J., Zhang C., Local analytic classification of $q$-difference equations, arXiv: 0903.0853
[7] Watson G. N., “The continuation of functions defined by generalized hypergeometric series”, Trans. Camb. Phil. Soc., 21 (1910), 281–299 | Zbl
[8] Zhang C., “Remarks on some basic hypergeometric series”, Theory and Applications of Special Functions, Dev. Math., 13, Springer, New York, 2005, 479–491 | DOI | MR | Zbl
[9] Zhang C., J. Approx. Theory, 122 (2003), Sur les fonctions {$q$}-{B}essel de {J}ackson | DOI | MR
[10] Zhang C., “Une sommation discrète pour des équations aux {$q$}-différences linéaires et à coefficients analytiques: théorie générale et exemples”, Differential Equations and the {S}tokes Phenomenon, World Sci. Publ., River Edge, NJ, 2002, 309–329 | DOI | MR | Zbl