Combinatorial Formulae for Nested Bethe Vectors
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give combinatorial formulae for vector-valued weight functions (off-shell nested Bethe vectors) for tensor products of irreducible evaluation modules over the Yangian $Y({\mathfrak{gl}}_N)$ and the quantum affine algebra $U_q(\widetilde{{\mathfrak{gl}}_N})$.
Keywords: weight functions; nested Bethe vectors; algebraic Bethe ansatz.
@article{SIGMA_2013_9_a47,
     author = {Vitaly Tarasov and Alexander Varchenko},
     title = {Combinatorial {Formulae} for {Nested} {Bethe} {Vectors}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a47/}
}
TY  - JOUR
AU  - Vitaly Tarasov
AU  - Alexander Varchenko
TI  - Combinatorial Formulae for Nested Bethe Vectors
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a47/
LA  - en
ID  - SIGMA_2013_9_a47
ER  - 
%0 Journal Article
%A Vitaly Tarasov
%A Alexander Varchenko
%T Combinatorial Formulae for Nested Bethe Vectors
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a47/
%G en
%F SIGMA_2013_9_a47
Vitaly Tarasov; Alexander Varchenko. Combinatorial Formulae for Nested Bethe Vectors. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a47/

[1] Belliard S., Pakuliak S., Ragoucy E., Slavnov N. A., Bethe vectors of ${\rm GL}(3)$-invariant integrable models, arXiv: 1210.0768

[2] Belliard S., Pakuliak S., Ragoucy E., Slavnov N. A., Bethe vectors of quantum integrable models with ${\rm GL}(3)$ trigonometric $R$-matrix, arXiv: 1304.7602

[3] Felder G., Rimányi R., Varchenko A., “Poincaré–{B}irkhoff–{W}itt expansions of the canonical elliptic differential form”, Quantum Groups, Contemp. Math., 433, Amer. Math. Soc., Providence, RI, 2007, 191–208, arXiv: math.RT/0502296 | DOI | MR | Zbl

[4] Frappat L., Khoroshkin S., Pakuliak S., Ragoucy E., “Bethe ansatz for the universal weight function”, Ann. Henri Poincaré, 10 (2009), 513–548, arXiv: 0810.3135 | DOI | MR | Zbl

[5] Khoroshkin S., Pakuliak S., “A computation of universal weight function for quantum affine algebra {$U_q(\widehat{\mathfrak{gl}}_N)$}”, J. Math. Kyoto Univ., 48 (2008), 277–321, arXiv: 0711.2819 | MR | Zbl

[6] Khoroshkin S., Pakuliak S., “Generating series for nested Bethe vectors”, SIGMA, 4 (2008), 081, 23 pp., arXiv: 0810.3131 | DOI | MR | Zbl

[7] Khoroshkin S., Pakuliak S., Tarasov V., “Off-shell {B}ethe vectors and {D}rinfeld currents”, J. Geom. Phys., 57 (2007), 1713–1732, arXiv: math.QA/0610517 | DOI | MR | Zbl

[8] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993 | DOI | MR | Zbl

[9] Kulish P. P., Reshetikhin N. Y., “Diagonalisation of {${\rm GL}(N)$} invariant transfer matrices and quantum {$N$}-wave system ({L}ee model)”, J. Phys. A: Math. Gen., 16 (1983), L591–L596 | DOI | MR | Zbl

[10] Matsuo A., “An application of {A}omoto–{G}elfand hypergeometric functions to the {${\rm SU}(n)$} {K}nizhnik–{Z}amolodchikov equation”, Comm. Math. Phys., 134 (1990), 65–77 | DOI | MR | Zbl

[11] Miwa T., Takeyama Y., Tarasov V., “Determinant formula for solutions of the quantum {K}nizhnik–{Z}amolodchikov equation associated with {$U_q({\rm sl}_n)$} at {$|q| =1$}”, Publ. Res. Inst. Math. Sci., 35 (1999), 871–892 | DOI | MR | Zbl

[12] Mukhin E., Tarasov V., Varchenko A., “Bethe eigenvectors of higher transfer matrices”, J. Stat. Mech. Theory Exp., 2006 (2006), P08002, 44 pp., arXiv: math.QA/0605015 | DOI | MR

[13] Mukhin E., Tarasov V., Varchenko A., Spaces of quasi-exponentials and representations of the Yangian $Y({\mathfrak{gl}}_N)$, arXiv: 1303.1578

[14] Os'kin A. F., Pakulyak S. Z., Silant'ev A. V., “On the universal weight function for the quantum affine algebra {$U_q(\widehat{\mathfrak{gl}}_N)$}”, St. Petersburg Math. J., 21 (2010), 651–680 | DOI | MR

[15] Rimányi R., Stevens L., Varchenko A., “Combinatorics of rational functions and {P}oincaré–{B}irchoff–{W}itt expansions of the canonical {$U(\mathfrak{n}_-)$}-valued differential form”, Ann. Comb., 9 (2005), 57–74 | DOI | MR | Zbl

[16] Rimányi R., Tarasov V., Varchenko A., Partial flag varieties, stable envelopes and weight functions, arXiv: 1212.6240

[17] Schechtman V. V., Varchenko A. N., “Hypergeometric solutions of {K}nizhnik–{Z}amolodchikov equations”, Lett. Math. Phys., 20 (1990), 279–283 | DOI | MR | Zbl

[18] Schechtman V. V., Varchenko A. N., “Arrangements of hyperplanes and {L}ie algebra homology”, Invent. Math., 106 (1991), 139–194 | DOI | MR | Zbl

[19] Tarasov V., Varchenko A., “Geometry of {$q$}-hypergeometric functions, quantum affine algebras and elliptic quantum groups”, Astérisque, 246, 1997, 1–135 | MR

[20] Tarasov V., Varchenko A., “Selberg-type integrals associated with {$\mathfrak{sl}_3$}”, Lett. Math. Phys., 65 (2003), 173–185, arXiv: math.QA/0302148 | DOI | MR | Zbl

[21] Tarasov V., Varchenko A., Hypergeometric solutions of the quantum differential equation of the cotangent bundle of a partial flag variety, arXiv: 1301.2705

[22] Varchenko A., Tarasov V., “Jackson integral representations for solutions of the {K}nizhnik–{Z}amolodchikov quantum equation”, Leningrad Math. J., 6 (1994), 275–313 | MR | Zbl