The Universal Askey–Wilson Algebra and DAHA of Type $(C_1^{\vee},C_1)$
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathbb F$ denote a field, and fix a nonzero $q\in\mathbb F$ such that $q^4\not=1$. The universal Askey–Wilson algebra $\Delta_q$ is the associative $\mathbb F$-algebra defined by generators and relations in the following way. The generators are $A$, $B$, $C$. The relations assert that each of \begin{gather*} A+\frac{qBC-q^{-1}CB}{q^2-q^{-2}}, \qquad B+\frac{qCA-q^{-1}AC}{q^2-q^{-2}}, \qquad C+\frac{qAB-q^{-1}BA}{q^2-q^{-2}} \end{gather*} is central in $\Delta_q$. The universal DAHA $\hat H_q$ of type $(C_1^\vee,C_1)$ is the associative $\mathbb F$-algebra defined by generators $\lbrace t^{\pm1}_i\rbrace_{i=0}^3$ and relations (i) $t_i t^{-1}_i=t^{-1}_i t_i=1$; (ii) $t_i+t^{-1}_i$ is central; (iii) $t_0t_1t_2t_3=q^{-1}$. We display an injection of $\mathbb F$-algebras $\psi:\Delta_q\to\hat H_q$ that sends \begin{gather*} A\mapsto t_1t_0+(t_1t_0)^{-1}, \qquad B\mapsto t_3t_0+(t_3t_0)^{-1}, \qquad C\mapsto t_2t_0+(t_2t_0)^{-1}. \end{gather*} For the map $\psi$ we compute the image of the three central elements mentioned above. The algebra $\Delta_q$ has another central element of interest, called the Casimir element $\Omega$. We compute the image of $\Omega$ under $\psi$. We describe how the Artin braid group $B_3$ acts on $\Delta_q$ and $\hat H_q$ as a group of automorphisms. We show that $\psi$ commutes with these $B_3$ actions. Some related results are obtained.
Keywords: Askey–Wilson polynomials; Askey–Wilson relations; rank one DAHA.
@article{SIGMA_2013_9_a46,
     author = {Paul Terwilliger},
     title = {The {Universal} {Askey{\textendash}Wilson} {Algebra} and {DAHA} of {Type} $(C_1^{\vee},C_1)$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a46/}
}
TY  - JOUR
AU  - Paul Terwilliger
TI  - The Universal Askey–Wilson Algebra and DAHA of Type $(C_1^{\vee},C_1)$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a46/
LA  - en
ID  - SIGMA_2013_9_a46
ER  - 
%0 Journal Article
%A Paul Terwilliger
%T The Universal Askey–Wilson Algebra and DAHA of Type $(C_1^{\vee},C_1)$
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a46/
%G en
%F SIGMA_2013_9_a46
Paul Terwilliger. The Universal Askey–Wilson Algebra and DAHA of Type $(C_1^{\vee},C_1)$. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a46/

[1] Alperin R. C., “${\rm PSL}_2(Z) = Z_2 \star Z_3$”, Amer. Math. Monthly, 100 (1993), 385–386 | DOI | MR | Zbl

[2] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize {J}acobi polynomials, Mem. Amer. Math. Soc., 54, no. 319, 1985, iv+55 pp. | MR

[3] Bergman G. M., “The diamond lemma for ring theory”, Adv. Math., 29 (1978), 178–218 | DOI | MR

[4] Cherednik I., “Double affine {H}ecke algebras, {K}nizhnik–{Z}amolodchikov equations, and {M}acdonald's operators”, Int. Math. Res. Not., 1992, 171–180 | DOI | MR | Zbl

[5] Ion B., Sahi S., “Triple groups and {C}herednik algebras”, Jack, {H}all–{L}ittlewood and {M}acdonald Polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 183–206, arXiv: math.QA/0304186 | DOI | MR | Zbl

[6] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2009 | MR | Zbl

[7] Ito T., Terwilliger P., “Double affine {H}ecke algebras of rank 1 and the {${\mathbb Z}_3$}-symmetric {A}skey–{W}ilson relations”, SIGMA, 6 (2010), 065, 9 pp., arXiv: 1001.2764 | DOI | MR | Zbl

[8] Ito T., Terwilliger P., Weng C.-W., “The quantum algebra {$U_q(\mathfrak{sl}_2)$} and its equitable presentation”, J. Algebra, 298 (2006), 284–301, arXiv: math.QA/0507477 | DOI | MR | Zbl

[9] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their {$q$}-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[10] Koornwinder T. H., “The relationship between {Z}hedanov's algebra {${\rm AW}(3)$} and the double affine {H}ecke algebra in the rank one case”, SIGMA, 3 (2007), 063, 15 pp., arXiv: math.QA/0612730 | DOI | MR | Zbl

[11] Koornwinder T. H., “Zhedanov's algebra {$\rm AW(3)$} and the double affine {H}ecke algebra in the rank one case. II: {T}he spherical subalgebra”, SIGMA, 4 (2008), 052, 17 pp., arXiv: 0711.2320 | DOI | MR | Zbl

[12] Korovnichenko A., Zhedanov A., “Classical Leonard triples”, Elliptic Integrable Systems (2004, Kyoto), Rokko Lectures in Mathematics, 18, eds. M. Noumi, K. Takasaki, Kobe University, 2005, 71–84

[13] Oblomkov A., “Double affine {H}ecke algebras of rank 1 and affine cubic surfaces”, Int. Math. Res. Not., 2004 (2004), 877–912, arXiv: math.RT/0306393 | DOI | MR | Zbl

[14] Sahi S., “Nonsymmetric {K}oornwinder polynomials and duality”, Ann. of Math. (2), 150 (1999), 267–282, arXiv: q-alg/9710032 | DOI | MR | Zbl

[15] Terwilliger P., “The universal {A}skey–{W}ilson algebra”, SIGMA, 7 (2011), 069, 24 pp., arXiv: 1104.2813 | DOI | MR | Zbl

[16] Terwilliger P., “The universal Askey–Wilson algebra and the equitable presentation of $U_q(\mathfrak{sl}_2)$”, SIGMA, 7 (2011), 099, 26 pp., arXiv: 1107.3544 | DOI | MR | Zbl

[17] Terwilliger P., Vidunas R., “Leonard pairs and the {A}skey–{W}ilson relations”, J. Algebra Appl., 3 (2004), 411–426, arXiv: math.QA/0305356 | DOI | MR | Zbl

[18] Wiegmann P. B., Zabrodin A. V., “Algebraization of difference eigenvalue equations related to {$U_q({\rm sl}_2)$}”, Nuclear Phys. B, 451 (1995), 699–724, arXiv: cond-mat/9501129 | DOI | MR | Zbl

[19] Zhedanov A. S., ““{H}idden symmetry” of {A}skey–{W}ilson polynomials”, Theoret. and Math. Phys., 89 (1991), 1146–1157 | DOI | MR | Zbl