On Addition Formulae for Sigma Functions of Telescopic Curves
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A telescopic curve is a certain algebraic curve defined by $m-1$ equations in the affine space of dimension $m$, which can be a hyperelliptic curve and an $(n,s)$ curve as a special case. We extend the addition formulae for sigma functions of $(n,s)$ curves to those of telescopic curves. The expression of the prime form in terms of the derivative of the sigma function is also given.
Keywords: sigma function; tau function; Schur function; Riemann surface; telescopic curve; gap sequence.
@article{SIGMA_2013_9_a45,
     author = {Takanori Ayano and Atsushi Nakayashiki},
     title = {On {Addition} {Formulae} for {Sigma} {Functions} of {Telescopic} {Curves}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a45/}
}
TY  - JOUR
AU  - Takanori Ayano
AU  - Atsushi Nakayashiki
TI  - On Addition Formulae for Sigma Functions of Telescopic Curves
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a45/
LA  - en
ID  - SIGMA_2013_9_a45
ER  - 
%0 Journal Article
%A Takanori Ayano
%A Atsushi Nakayashiki
%T On Addition Formulae for Sigma Functions of Telescopic Curves
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a45/
%G en
%F SIGMA_2013_9_a45
Takanori Ayano; Atsushi Nakayashiki. On Addition Formulae for Sigma Functions of Telescopic Curves. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a45/

[1] Ayano T., “Sigma functions for telescopic curves”, Osaka J. Math. (to appear) , arXiv: 1201.0644

[2] Baker H. F., Abelian functions. Abel's theorem and the allied theory of theta functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995 | MR

[3] Braden H. W., Enolski V. Z., Fedorov Yu. N., Dynamics on strata of trigonal Jacobians and some integrable problems of rigid body motion, arXiv: 1210.3596

[4] Brauer A., “On a problem of partitions”, Amer. J. Math., 64 (1942), 299–312 | DOI | MR | Zbl

[5] Brauer A., Seelbinder B. M., “On a problem of partitions, II”, Amer. J. Math., 76 (1954), 343–346 | DOI | MR | Zbl

[6] Buchstaber V. M., Enolski V. Z., Leykin D. V., Multi-dimensional sigma functions, arXiv: 1208.0990

[7] Bukhshtaber V. M., Enolski V. Z., Leykin D. V., “Rational analogues of abelian functions”, Funct. Anal. Appl., 33 (1999), 83–94 | DOI | MR | Zbl

[8] Eilbeck J. C., Enolski V. Z., Gibbons J., “Sigma, tau and {A}belian functions of algebraic curves”, J. Phys. A: Math. Theor., 43 (2010), 455216, 20 pp., arXiv: 1006.5219 | DOI | MR | Zbl

[9] Fay J. D., Theta functions on {R}iemann surfaces, Lecture Notes in Mathematics, 352, Springer-Verlag, Berlin, 1973 | MR | Zbl

[10] Harnad J., Enolski V. Z., “Schur function expansions of KP $\tau$-functions associated to algebraic curves”, Russ. Math. Surv., 66 (2011), 767–807, arXiv: 1012.3152 | DOI | MR | Zbl

[11] Kirfel C., Pellikaan R., “The minimum distance of codes in an array coming from telescopic semigroups”, IEEE Trans. Inform. Theory, 41 (1995), 1720–1732 | DOI | MR | Zbl

[12] Klein F., “Ueber hyperelliptische {S}igmafunctionen”, Math. Ann., 27 (1886), 431–464 | DOI | MR

[13] Klein F., “Ueber hyperelliptische {S}igmafunctionen (Zweite Abhandlung)”, Math. Ann., 32 (1888), 351–380 | DOI | MR

[14] Komeda J., Matsutani S., Previato E., The sigma function for Weierstrass semigroups $\langle 3,7,8 \rangle$ and $\langle 6,13,14,15,16 \rangle$, arXiv: 1303.0451

[15] Korotkin D., Shramchenko V., “On higher genus {W}eierstrass sigma-function”, Phys. D, 241 (2012), 2086–2094, arXiv: 1201.3961 | DOI | MR | Zbl

[16] Matsutani S., Sigma functions for a space curve (3,4,5) type with an appendix by J. Komeda, arXiv: 1112.4137

[17] Micale V., Olteanu A., “On the {B}etti numbers of some semigroup rings”, Matematiche (Catania), 67 (2012), 145–159, arXiv: 1111.1433 | DOI | MR | Zbl

[18] Miura S., “Linear codes on affine algebraic curves”, Trans. IEICE, J81-A (1998), 1398–1421

[19] Nakayashiki A., “On algebraic expressions of sigma functions for $(n,s)$ curves”, Asian J. Math., 14 (2010), 175–211, arXiv: 0803.2083 | MR

[20] Nakayashiki A., “Sigma function as a tau function”, Int. Math. Res. Not., 2010:3 (2010), 373–394, arXiv: 0904.0846 | DOI | MR | Zbl

[21] Nakayashiki A., Yori K., “Derivatives of Schur, tau and sigma functions on Abel–Jacobi images”, Symmetries, Integrable Systems and Representations, Springer Proceedings in Mathematics Statistics, 40, eds. K. Iohara, S. Morier-Genoud, B. Remy, Springer-Verlag, London, 2013, 429–462, arXiv: 1205.6897 | DOI | Zbl

[22] Nishijima D., Order counting algorithm for Fermat curves and Klein curves using $p$-adic cohomology, Master's Thesis, Osaka University, 2008

[23] Ônishi Y., “Determinant expressions for hyperelliptic functions (with an Appendix by Shigeki Matsutani)”, Proc. Edinb. Math. Soc. (2), 48 (2005), 705–742, arXiv: math.NT/0105189 | DOI | MR

[24] Sato M., Sato Y., “Soliton equations as dynamical systems on infinite-dimensional {G}rassmann manifold”, Nonlinear Partial Differential Equations in Applied Science ({T}okyo, 1982), North-Holland Math. Stud., 81, eds. P. D. Lax, H. Fujita, G. Strang, North-Holland, Amsterdam, 1983, 259–271 | DOI | MR | Zbl