Euler Equations Related to the Generalized Neveu–Schwarz Algebra
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study supersymmetric or bi-superhamiltonian Euler equations related to the generalized Neveu–Schwarz algebra. As an application, we obtain several supersymmetric or bi-superhamiltonian generalizations of some well-known integrable systems including the coupled KdV equation, the 2-component Camassa–Holm equation and the 2-component Hunter–Saxton equation. To our knowledge, most of them are new.
Keywords: supersymmetric; bi-superhamiltonian; Euler equations; generalized Neveu–Schwarz algebra.
@article{SIGMA_2013_9_a44,
     author = {Dafeng Zuo},
     title = {Euler {Equations} {Related} to the {Generalized} {Neveu{\textendash}Schwarz} {Algebra}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a44/}
}
TY  - JOUR
AU  - Dafeng Zuo
TI  - Euler Equations Related to the Generalized Neveu–Schwarz Algebra
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a44/
LA  - en
ID  - SIGMA_2013_9_a44
ER  - 
%0 Journal Article
%A Dafeng Zuo
%T Euler Equations Related to the Generalized Neveu–Schwarz Algebra
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a44/
%G en
%F SIGMA_2013_9_a44
Dafeng Zuo. Euler Equations Related to the Generalized Neveu–Schwarz Algebra. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a44/

[1] Antonowicz M., Fordy A. P., “Super-extensions of energy dependent {S}chrödinger operators”, Comm. Math. Phys., 124 (1989), 487–500 | DOI | MR | Zbl

[2] Aratyn H., Gomes J. F., Zimerman A. H., “Deformations of {$N=2$} superconformal algebra and supersymmetric two-component {C}amassa–{H}olm equation”, J. Phys. A: Math. Theor., 40 (2007), 4511–4527, arXiv: hep-th/0611192 | DOI | MR | Zbl

[3] Arnold V. I., “Sur la géométrie différentielle des groupes de {L}ie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier (Grenoble), 16 (1966), 319–361 | DOI | MR

[4] Arnold V. I., Khesin B. A., Topological methods in hydrodynamics, Applied Mathematical Sciences, 125, Springer-Verlag, New York, 1998 | MR | Zbl

[5] Brunelli J. C., Das A., Popowicz Z., “Supersymmetric extensions of the {H}arry {D}ym hierarchy”, J. Math. Phys., 44 (2003), 4756–4767, arXiv: nlin.SI/0304047 | DOI | MR | Zbl

[6] Chen M., Liu S.-Q., Zhang Y., “A two-component generalization of the {C}amassa–{H}olm equation and its solutions”, Lett. Math. Phys., 75 (2006), 1–15, arXiv: nlin.SI/0501028 | DOI | MR | Zbl

[7] Constantin A., Kappeler T., Kolev B., Topalov P., “On geodesic exponential maps of the {V}irasoro group”, Ann. Global Anal. Geom., 31 (2007), 155–180 | DOI | MR | Zbl

[8] Constantin A., Kolev B., “Geodesic flow on the diffeomorphism group of the circle”, Comment. Math. Helv., 78 (2003), 787–804, arXiv: math-ph/0305013 | DOI | MR | Zbl

[9] Constantin A., Kolev B., “Integrability of invariant metrics on the diffeomorphism group of the circle”, J. Nonlinear Sci., 16 (2006), 109–122, arXiv: 0911.5058 | DOI | MR | Zbl

[10] Devchand C., A Kuper–CH system, Unpublished note, 2005 ; Private communications, 2010 | Zbl | Zbl

[11] Devchand C., Schiff J., “The supersymmetric {C}amassa–{H}olm equation and geodesic flow on the superconformal group”, J. Math. Phys., 42 (2001), 260–273, arXiv: solv-int/9811016 | DOI | MR | Zbl

[12] Ebin D. G., Marsden J., “Groups of diffeomorphisms and the motion of an incompressible fluid”, Ann. of Math. (2), 92 (1970), 102–163 | DOI | MR | Zbl

[13] Falqui G., “On a {C}amassa–{H}olm type equation with two dependent variables”, J. Phys. A: Math. Gen., 39 (2006), 327–342, arXiv: nlin.SI/0505059 | DOI | MR | Zbl

[14] Guha P., “Geodesic flow on extended {B}ott–{V}irasoro group and generalized two-component peakon type dual systems”, Rev. Math. Phys., 20 (2008), 1191–1208 | DOI | MR | Zbl

[15] Guha P., “Integrable geodesic flows on the (super)extension of the {B}ott–{V}irasoro group”, Lett. Math. Phys., 52 (2000), 311–328 | DOI | MR | Zbl

[16] Guha P., Olver P. J., “Geodesic flow and two (super) component analog of the {C}amassa–{H}olm equation”, SIGMA, 2 (2006), 054, 9 pp., arXiv: nlin.SI/0605041 | DOI | MR | Zbl

[17] Ito M., “Symmetries and conservation laws of a coupled nonlinear wave equation”, Phys. Lett. A, 91 (1982), 335–338 | DOI | MR

[18] Khesin B., “Topological fluid dynamics”, Notices Amer. Math. Soc., 52 (2005), 9–19 | MR | Zbl

[19] Khesin B., Lenells J., Misiołek G., “Generalized {H}unter–{S}axton equation and the geometry of the group of circle diffeomorphisms”, Math. Ann., 342 (2008), 617–656, arXiv: 0803.3078 | DOI | MR | Zbl

[20] Khesin B., Misiołek G., “Euler equations on homogeneous spaces and {V}irasoro orbits”, Adv. Math., 176 (2003), 116–144 | DOI | MR | Zbl

[21] Khesin B., Wendt R., The geometry of infinite-dimensional groups, A Series of Modern Surveys in Mathematics, 51, Springer-Verlag, Berlin, 2009 | MR | Zbl

[22] Kolev B., “Bi-{H}amiltonian systems on the dual of the {L}ie algebra of vector fields of the circle and periodic shallow water equations”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365 (2007), 2333–2357, arXiv: math-ph/0610001 | DOI | MR | Zbl

[23] Kupershmidt B. A., “A super {K}orteweg–de {V}ries equation: an integrable system”, Phys. Lett. A, 102 (1984), 213–215 | DOI | MR

[24] Lenells J., “A bi-{H}amiltonian supersymmetric geodesic equation”, Lett. Math. Phys., 85 (2008), 55–63, arXiv: 0806.4793 | DOI | MR | Zbl

[25] Lenells J., Lechtenfeld O., “On the {$N=2$} supersymmetric {C}amassa–{H}olm and {H}unter–{S}axton equations”, J. Math. Phys., 50 (2009), 012704, 17 pp., arXiv: 0809.0077 | DOI | MR

[26] Liu Q. P., Popowicz Z., Tian K., “Supersymmetric reciprocal transformation and its applications”, J. Math. Phys., 51 (2010), 093511, 24 pp., arXiv: 1002.1769 | DOI | MR

[27] Liu Q. P., Popowicz Z., Tian K., “The even and odd supersymmetric {H}unter–{S}axton and {L}iouville equations”, Phys. Lett. A, 375 (2010), 29–35, arXiv: 1005.3109 | DOI | MR | Zbl

[28] Manakov S. V., “A remark on the integration of the {E}ulerian equations of the dynamics of an {$n$}-dimensional rigid body”, Funct. Anal. Appl., 10 (1976), 328–329 | DOI | MR

[29] Marcel P., Ovsienko V., Roger C., “Extension of the {V}irasoro and {N}eveu–{S}chwarz algebras and generalized {S}turm–{L}iouville operators”, Lett. Math. Phys., 40 (1997), 31–39, arXiv: hep-th/9602170 | DOI | MR | Zbl

[30] Marsden J. E., Ratiu T. S., Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts in Applied Mathematics, 17, 2nd ed., Springer-Verlag, New York, 1999 | DOI | MR | Zbl

[31] Mathieu P., “Supersymmetric extension of the {K}orteweg–de {V}ries equation”, J. Math. Phys., 29 (1988), 2499–2506 | DOI | MR | Zbl

[32] Mishchenko A. S., “Integrals of geodesic flows on {L}ie groups”, Funct. Anal. Appl., 4 (1970), 232–235 | DOI | Zbl

[33] Misiołek G., “A shallow water equation as a geodesic flow on the {B}ott–{V}irasoro group”, J. Geom. Phys., 24 (1998), 203–208 | DOI | MR | Zbl

[34] Ovsienko V. Yu., “Coadjoint representation of {V}irasoro-type {L}ie algebras and differential operators on tensor-densities”, Infinite Dimensional {K}ähler Manifolds ({O}berwolfach, 1995), DMV Sem., 31, Birkhäuser, Basel, 2001, 231–255, arXiv: math-ph/0602009 | MR | Zbl

[35] Ovsienko V. Yu., Khesin B. A., “Korteweg–de Vries superequation as an Euler equation”, Funct. Anal. Appl., 21 (1987), 329–331 | DOI | MR | Zbl

[36] Popowicz Z., “A 2-component or {$N=2$} supersymmetric {C}amassa–{H}olm equation”, Phys. Lett. A, 354 (2006), 110–114, arXiv: nlin.SI/0509050 | DOI | MR | Zbl

[37] Ratiu T., “Euler–{P}oisson equations on {L}ie algebras and the {$N$}-dimensional heavy rigid body”, Proc. Nat. Acad. Sci. USA, 78 (1981), 1327–1328 | DOI | MR | Zbl

[38] Zhang L., Zuo D., “Integrable hierarchies related to the {K}uper–{CH} spectral problem”, J. Math. Phys., 52 (2011), 073503, 11 pp. | DOI | MR

[39] Zuo D., “A two-component {$\mu$}-{H}unter–{S}axton equation”, Inverse Problems, 26 (2010), 085003, 9 pp., arXiv: 1010.4454 | DOI | MR | Zbl