Two-Dimensional Toda–Heisenberg Lattice
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz–Ladik hierarchy, and derive its $N$-soliton solutions.
Keywords: classical Heisenberg model; Toda-like lattices; Hirota direct method; Ablowitz–Ladik hierarchy; soliton.
@article{SIGMA_2013_9_a43,
     author = {Vadim E. Vekslerchik},
     title = {Two-Dimensional {Toda{\textendash}Heisenberg} {Lattice}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a43/}
}
TY  - JOUR
AU  - Vadim E. Vekslerchik
TI  - Two-Dimensional Toda–Heisenberg Lattice
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a43/
LA  - en
ID  - SIGMA_2013_9_a43
ER  - 
%0 Journal Article
%A Vadim E. Vekslerchik
%T Two-Dimensional Toda–Heisenberg Lattice
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a43/
%G en
%F SIGMA_2013_9_a43
Vadim E. Vekslerchik. Two-Dimensional Toda–Heisenberg Lattice. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a43/

[1] Ablowitz M. J., Ladik J. F., “Nonlinear differential-difference equations”, J. Math. Phys., 16 (1975), 598–603 | DOI | MR | Zbl

[2] Ablowitz M. J., Ladik J. F., “Nonlinear differential-difference equations and Fourier analysis”, J. Math. Phys., 17 (1976), 1011–1018 | DOI | MR | Zbl

[3] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press Inc., London, 1982 | MR | Zbl

[4] Brown H. A., Luttinger J. M., “Ferromagnetic and antiferromagnetic Curie temperatures”, Phys. Rev., 100 (1955), 685–692 | DOI | Zbl

[5] Bruschi M., Ragnisco O., “Lax representation and complete integrability for the periodic relativistic Toda lattice”, Phys. Lett. A, 134 (1989), 365–370 | DOI | MR

[6] Dorizzi B., Grammaticos B., Ramani A., Winternitz P., Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable?, J. Math. Phys., 27 (1986), 2848–2852 | DOI | MR | Zbl

[7] Hietarinta J., “A search for bilinear equations passing Hirota's three-soliton condition. I: KdV-type bilinear equations”, J. Math. Phys., 28 (1987), 1732–1742 | DOI | MR | Zbl

[8] Hietarinta J., “A search for bilinear equations passing Hirota's three-soliton condition. II: mKdV-type bilinear equations”, J. Math. Phys., 28 (1987), 2094–2101 | DOI | MR | Zbl

[9] Hietarinta J., “A search for bilinear equations passing Hirota's three-soliton condition. III: Sine-Gordon-type bilinear equations”, J. Math. Phys., 28 (1987), 2586–2592 | DOI | MR | Zbl

[10] Hietarinta J., “A search for bilinear equations passing Hirota's three-soliton condition. IV: Complex bilinear equations”, J. Math. Phys., 29 (1988), 628–635 | DOI | MR | Zbl

[11] Hietarinta J., Zhang D. J., “Hirota's method and the search for integrable partial difference equations. 1: Equations on a $3\times 3$ stencil”, J. Difference Equ. Appl. (to appear) , arXiv: 1210.4708 | DOI

[12] Hietarinta J., Zhang D. J., “Hirota's method and the search for integrable partial difference equations. 2: Equations on a $2\times N$ stencil”, Development in Nonlinear Wave: Phenomena and Modeling, Research Institute for Applied Mechanics, Kyushu University, 2011, 30–36; Report of RIAM Symposium No 22AO-S8

[13] Hirota R., “Nonlinear partial difference equations. I: A difference analogue of the Korteweg–de Vries equation”, J. Phys. Soc. Japan, 43 (1977), 1424–1433 | DOI | MR

[14] Hirota R., “Nonlinear partial difference equations. II: Discrete-time Toda equation”, J. Phys. Soc. Japan, 43 (1977), 2074–2078 | DOI | MR

[15] Hirota R., The direct method in soliton theory, Cambridge Tracts in Mathematics, 155, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[16] Ishimori Y., “An integrable classical spin chain”, J. Phys. Soc. Japan, 51 (1982), 3417–3418 | DOI | MR

[17] Leznov A. N., Saveliev M. V., Smirnov V. G., “Explicit solutions to two-dimensionalized Volterra equations”, Lett. Math. Phys., 4 (1980), 445–449 | DOI | MR | Zbl

[18] Mattis D. C., The theory of magnetism, v. I, Springer Series in Solid-State Sciences, 17, Statics and dynamics, Springer-Verlag, Berlin, 1981 | DOI

[19] Newell A. C., Yunbo Z., “The Hirota conditions”, J. Math. Phys., 27 (1986), 2016–2021 | DOI | MR | Zbl

[20] Papageorgiou V., Grammaticos B., Ramani A., “Orthogonal polynomial approach to discrete Lax pairs for initial-boundary value problems of the QD algorithm”, Lett. Math. Phys., 34 (1995), 91–101 | DOI | MR | Zbl

[21] Pritula G. M., Vekslerchik V. E., “Toda–Heisenberg chain: interacting $\sigma$-fields in two dimensions”, J. Nonlinear Math. Phys., 18 (2011), 443–459, arXiv: 1108.5937 | DOI | MR | Zbl

[22] Ruijsenaars S. N. M., “Relativistic Toda systems”, Comm. Math. Phys., 133 (1990), 217–247 | DOI | MR | Zbl

[23] Vekslerchik V. E., “Explicit solutions for a $(2+1)$-dimensional Toda-like chain”, J. Phys. A: Math. Theor., 46 (2013), 055202, 22 pp., arXiv: 1301.0414 | DOI | MR | Zbl

[24] Vekslerchik V. E., “Functional representation of the Ablowitz–Ladik hierarchy, II”, J. Nonlinear Math. Phys., 9 (2002), 157–180, arXiv: solv-int/9812020 | DOI | MR | Zbl

[25] Vekslerchik V. E., “The $2$D Toda lattice and the Ablowitz–Ladik hierarchy”, Inverse Problems, 11 (1995), 463–479 | DOI | MR | Zbl