@article{SIGMA_2013_9_a40,
author = {M. Tahir Mustafa and Ahmad Y. Al-Dweik and Raed A. Mara'beh},
title = {On the {Linearization} of {Second-Order} {Ordinary} {Differential} {Equations} to the {Laguerre} {Form} via {Generalized} {Sundman} {Transformations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a40/}
}
TY - JOUR AU - M. Tahir Mustafa AU - Ahmad Y. Al-Dweik AU - Raed A. Mara'beh TI - On the Linearization of Second-Order Ordinary Differential Equations to the Laguerre Form via Generalized Sundman Transformations JO - Symmetry, integrability and geometry: methods and applications PY - 2013 VL - 9 UR - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a40/ LA - en ID - SIGMA_2013_9_a40 ER -
%0 Journal Article %A M. Tahir Mustafa %A Ahmad Y. Al-Dweik %A Raed A. Mara'beh %T On the Linearization of Second-Order Ordinary Differential Equations to the Laguerre Form via Generalized Sundman Transformations %J Symmetry, integrability and geometry: methods and applications %D 2013 %V 9 %U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a40/ %G en %F SIGMA_2013_9_a40
M. Tahir Mustafa; Ahmad Y. Al-Dweik; Raed A. Mara'beh. On the Linearization of Second-Order Ordinary Differential Equations to the Laguerre Form via Generalized Sundman Transformations. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a40/
[1] Bluman G. W., Anco S. C., Symmetry and integration methods for differential equations, Applied Mathematical Sciences, 154, Springer-Verlag, New York, 2002 | MR | Zbl
[2] Chandrasekar V. K., Senthilvelan M., Lakshmanan M., “A unification in the theory of linearization of second-order nonlinear ordinary differential equations”, J. Phys. A: Math. Gen., 39 (2006), L69–L76, arXiv: nlin.SI/0510045 | DOI | MR | Zbl
[3] Chandrasekar V. K., Senthilvelan M., Lakshmanan M., “On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 2451–2476, arXiv: nlin.SI/0408053 | DOI | MR | Zbl
[4] Duarte L. G. S., Moreira I. C., Santos F. C., “Linearization under non-point transformations”, J. Phys. A: Math. Gen., 27 (1994), L739–L743 | DOI | MR | Zbl
[5] Euler N., “Transformation properties of $\ddot x+f_1(t)\dot x+f_2(t)x+f_3(t)x^n=0$”, J. Nonlinear Math. Phys., 4 (1997), 310–337 | DOI | MR | Zbl
[6] Euler N., Euler M., “Sundman symmetries of nonlinear second-order and third-order ordinary differential equations”, J. Nonlinear Math. Phys., 11 (2004), 399–421 | DOI | MR | Zbl
[7] Euler N., Wolf T., Leach P. G. L., Euler M., “Linearisable third-order ordinary differential equations and generalised Sundman transformations: the case $X'''=0$”, Acta Appl. Math., 76 (2003), 89–115, arXiv: nlin.SI/0203028 | DOI | MR | Zbl
[8] Ibragimov N. H., Practical course in differential equations and mathematical modelling, ALGA, Karlskrona, 2006
[9] Ibragimov N. H., Magri F., “Geometric proof of Lie's linearization theorem”, Nonlinear Dynam., 36 (2004), 41–46 | DOI | MR | Zbl
[10] Mahomed F. M., “Symmetry group classification of ordinary differential equations: survey of some results”, Math. Methods Appl. Sci., 30 (2007), 1995–2012 | DOI | MR | Zbl
[11] Meleshko S. V., “On linearization of third-order ordinary differential equations”, J. Phys. A: Math. Gen., 39 (2006), 15135–15145 | DOI | MR | Zbl
[12] Mimura F., Nôno T., “A new conservation law for a system of second-order differential equations”, Bull. Kyushu Inst. Tech. Math. Natur. Sci., 1994, no. 41, 1–10 | MR | Zbl
[13] Muriel C., Romero J. L., “Nonlocal transformations and linearization of second-order ordinary differential equations”, J. Phys. A: Math. Theor., 43 (2010), 434025, 13 pp. | DOI | MR | Zbl
[14] Muriel C., Romero J. L., “Second-order ordinary differential equations and first integrals of the form $A(t,x)\dot x+B(t,x)$”, J. Nonlinear Math. Phys., 16:1 (2009), 209–222 | DOI | MR
[15] Muriel C., Romero J. L., “Second-order ordinary differential equations with first integrals of the form $C(t)+1/(A(t,x)\dot x+B(t,x))$”, J. Nonlinear Math. Phys., 18:1 (2011), 237–250 | DOI | MR
[16] Nakpim W., Meleshko S. V., “Linearization of second-order ordinary differential equations by generalized Sundman transformations”, SIGMA, 6 (2010), 051, 11 pp., arXiv: 1006.2891 | DOI | MR | Zbl
[17] Pressley A., Elementary differential geometry, Springer Undergraduate Mathematics Series, 2nd ed., Springer-Verlag, London, 2010 | DOI | Zbl
[18] Stephani H., Differential equations. Their solution using symmetries, Cambridge University Press, Cambridge, 1989 | Zbl