Upper Bounds for Mutations of Potentials
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this note we provide a new, algebraic proof of the excessive Laurent phenomenon for mutations of potentials (in the sense of [Galkin S., Usnich A., Preprint IPMU 10-0100, 2010]) by introducing to this theory the analogue of the upper bounds from [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1–52].
Keywords: cluster algebras; Laurent phenomenon; mutation of potentials; mirror symmetry.
@article{SIGMA_2013_9_a4,
     author = {John Alexander Cruz Morales and Sergey Galkin},
     title = {Upper {Bounds} for {Mutations} of {Potentials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a4/}
}
TY  - JOUR
AU  - John Alexander Cruz Morales
AU  - Sergey Galkin
TI  - Upper Bounds for Mutations of Potentials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a4/
LA  - en
ID  - SIGMA_2013_9_a4
ER  - 
%0 Journal Article
%A John Alexander Cruz Morales
%A Sergey Galkin
%T Upper Bounds for Mutations of Potentials
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a4/
%G en
%F SIGMA_2013_9_a4
John Alexander Cruz Morales; Sergey Galkin. Upper Bounds for Mutations of Potentials. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a4/

[1] Akhtar M., Coates T., Galkin S., Kasprzyk A. M., “Minkowski polynomials and mutations”, SIGMA, 8 (2012), 094, 707, arXiv: 1212.1785

[2] Auroux D., “Mirror symmetry and $T$-duality in the complement of an anticanonical divisor”, J. Gökova Geom. Topol. GGT, 1 (2007), 51–91, arXiv: 0706.3207 | MR | Zbl

[3] Berenstein A., Fomin S., Zelevinsky A., “Cluster algebras. III: Upper bounds and double Bruhat cells”, Duke Math. J., 126 (2005), 1–52, arXiv: math.RT/0305434 | DOI | MR | Zbl

[4] Berenstein A., Zelevinsky A., “Quantum cluster algebras”, Adv. Math., 195 (2005), 405–455, arXiv: math.QA/0404446 | DOI | MR | Zbl

[5] Cruz Morales J. A., Galkin S., Quantized mutations of potentials and their upper bounds, in preparation

[6] Fock V. V., Goncharov A. B., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 865–930, arXiv: math.AG/0311245 | MR | Zbl

[7] Fomin S., Zelevinsky A., “Cluster algebras. I: Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl

[8] Fukaya K., Oh Y. G., Ohta H., Ono K., Lagrangian Floer theory and mirror symmetry on compact toric manifolds, arXiv: 1009.1648

[9] Galkin S., Usnich A., Mutations of potentials, Preprint IPMU 10–0100, 2010

[10] Kontsevich M., Noncommutative identities, arXiv: 1109.2469

[11] Zelevinsky A., Quantum cluster algebras: Oberwolfach talk, February 2005, arXiv: math.QA/0502260 | MR