Dunkl Operators as Covariant Derivatives in a Quantum Principal Bundle
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A quantum principal bundle is constructed for every Coxeter group acting on a finite-dimensional Euclidean space $E$, and then a connection is also defined on this bundle. The covariant derivatives associated to this connection are the Dunkl operators, originally introduced as part of a program to generalize harmonic analysis in Euclidean spaces. This gives us a new, geometric way of viewing the Dunkl operators. In particular, we present a new proof of the commutativity of these operators among themselves as a consequence of a geometric property, namely, that the connection has curvature zero.
Keywords: Dunkl operators; quantum principal bundle; quantum connection; quantum curvature; Coxeter groups.
@article{SIGMA_2013_9_a39,
     author = {Micho {\DJ}ur{\dj}evich and Stephen Bruce Sontz},
     title = {Dunkl {Operators} as {Covariant} {Derivatives} in {a~Quantum} {Principal} {Bundle}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a39/}
}
TY  - JOUR
AU  - Micho Đurđevich
AU  - Stephen Bruce Sontz
TI  - Dunkl Operators as Covariant Derivatives in a Quantum Principal Bundle
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a39/
LA  - en
ID  - SIGMA_2013_9_a39
ER  - 
%0 Journal Article
%A Micho Đurđevich
%A Stephen Bruce Sontz
%T Dunkl Operators as Covariant Derivatives in a Quantum Principal Bundle
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a39/
%G en
%F SIGMA_2013_9_a39
Micho Đurđevich; Stephen Bruce Sontz. Dunkl Operators as Covariant Derivatives in a Quantum Principal Bundle. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a39/

[1] Ben Sa{ï}d S., Kobayashi T., Ørsted B., “Laguerre semigroup and Dunkl operators”, Compos. Math., 148 (2012), 1265–1336, arXiv: 0907.3749 | DOI | MR | Zbl

[2] Cherednik I., “Generalized braid groups and local $r$-matrix systems”, Soviet Math. Dokl., 40 (1990), 43–48 | MR

[3] Cherednik I., “A unification of {K}nizhnik–{Z}amolodchikov and {D}unkl operators via affine {H}ecke algebras”, Invent. Math., 106 (1991), 411–431 | DOI | MR

[4] Chouchene F., Gallardo L., Mili M., “Les équations de la chaleur et de {P}oisson pour le laplacien généralisé de {J}acobi–{D}unkl”, C. R. Math. Acad. Sci. Paris, 341 (2005), 179–184 | DOI | MR | Zbl

[5] Connes A., “Non-commutative differential geometry”, Publ. Math. Inst. Hautes Études Sci., 62 (1985), 41–144 | DOI | Zbl

[6] De Bie H., Ørsted B., Somberg P., Souček V., “Dunkl operators and a family of realizations of $\mathfrak{osp}(1\vert 2)$”, Trans. Amer. Math. Soc., 364 (2012), 3875–3902, arXiv: 0911.4725 | DOI | MR

[7] de Jeu M. F. E., “The {D}unkl transform”, Invent. Math., 113 (1993), 147–162 | DOI | MR | Zbl

[8] Drinfeld V. G., “Quantum groups”, Proceedings of the {I}nternational {C}ongress of {M}athematicians (Berkeley, Calif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR

[9] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl

[10] Dunkl C. F., de Jeu M. F. E., Opdam E. M., “Singular polynomials for finite reflection groups”, Trans. Amer. Math. Soc., 346 (1994), 237–256 | DOI | MR | Zbl

[11] Dunkl C. F., Opdam E. M., “Dunkl operators for complex reflection groups”, Proc. London Math. Soc. (3), 86 (2003), 70–108 | DOI | MR | Zbl

[12] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 81, Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl

[13] Ðurđevich M., “Characteristic classes of quantum principal bundles”, Algebras Groups Geom., 26 (2009), 241–341, arXiv: q-alg/9507017 | MR

[14] Ðurđevich M., “Geometry of quantum principal bundles, I”, Comm. Math. Phys., 175 (1996), 457–520, arXiv: q-alg/9507019 | DOI | MR

[15] Ðurđevich M., “Geometry of quantum principal bundles. II: Extended version”, Rev. Math. Phys., 9 (1997), 531–607, arXiv: q-alg/9412005 | DOI | MR

[16] Ðurđevich M., “Geometry of quantum principal bundles, III”, Algebras Groups Geom., 27 (2010), 247–336 | MR

[17] Etingof P., Calogero–{M}oser systems and representation theory, Zürich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2007 | DOI

[18] Grove L. C., Benson C. T., Finite reflection groups, Graduate Texts in Mathematics, 99, 2nd ed., Springer-Verlag, New York, 1985 | DOI | MR | Zbl

[19] Humphreys J. E., Reflection groups and {C}oxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[20] Kobayashi S., Nomizu K., Foundations of differential geometry, v. I, Interscience Publishers, New York–London, 1963 | Zbl

[21] Opdam E. M., Lecture notes on {D}unkl operators for real and complex reflection groups, MSJ Memoirs, 8, Mathematical Society of Japan, Tokyo, 2000 | MR | Zbl

[22] Oziewicz Z., “Relativity groupoid instead of relativity group”, Int. J. Geom. Methods Mod. Phys., 4 (2007), 739–749 | DOI | MR | Zbl

[23] Prugovečki E., Quantum geometry. A framework for quantum general relativity, Fundamental Theories of Physics, 48, Kluwer Academic Publishers Group, Dordrecht, 1992 | Zbl

[24] Rösler M., “Dunkl operators: theory and applications”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., 1817, Springer, Berlin, 2003, 93–135, arXiv: math.CA/0210366 | DOI

[25] Rösler M., “Generalized {H}ermite polynomials and the heat equation for {D}unkl operators”, Comm. Math. Phys., 192 (1998), 519–542, arXiv: q-alg/9703006 | DOI | MR

[26] Rösler M., Voit M., “Markov processes related with {D}unkl operators”, Adv. in Appl. Math., 21 (1998), 575–643 | DOI | MR

[27] Serre J. P., Lie algebras and {L}ie groups, W. A. Benjamin, Inc., New York–Amsterdam, 1965 | Zbl

[28] Sontz S. B., “On {S}egal–{B}argmann analysis for finite {C}oxeter groups and its heat kernel”, Math. Z., 269 (2011), 9–28 | DOI | MR | Zbl

[29] Sutherland B., “Exact results for a quantum many-body problem in one-dimension, II”, Phys. Rev. A, 5 (1972), 1372–1376 | DOI

[30] Woronowicz S. L., “Compact matrix pseudogroups”, Comm. Math. Phys., 111 (1987), 613–665 | DOI | MR | Zbl

[31] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl

[32] Woronowicz S. L., “Pseudospaces, pseudogroups and {P}ontriagin duality”, Mathematical Problems in Theoretical Physics, Proc. {I}nternat. {C}onf. {M}ath. {P}hys. (Lausanne, 1979), Lecture Notes in Phys., 116, Springer, Berlin, 1980, 407–412 | DOI | MR