@article{SIGMA_2013_9_a38,
author = {Robert Coquereaux and Jean-Bernard Zuber},
title = {Drinfeld {Doubles} for {Finite} {Subgroups} of $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ {Lie} {Groups}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a38/}
}
TY - JOUR
AU - Robert Coquereaux
AU - Jean-Bernard Zuber
TI - Drinfeld Doubles for Finite Subgroups of $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ Lie Groups
JO - Symmetry, integrability and geometry: methods and applications
PY - 2013
VL - 9
UR - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a38/
LA - en
ID - SIGMA_2013_9_a38
ER -
%0 Journal Article
%A Robert Coquereaux
%A Jean-Bernard Zuber
%T Drinfeld Doubles for Finite Subgroups of $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ Lie Groups
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a38/
%G en
%F SIGMA_2013_9_a38
Robert Coquereaux; Jean-Bernard Zuber. Drinfeld Doubles for Finite Subgroups of $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ Lie Groups. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a38/
[1] Behrend R. E., Pearce P. A., Petkova V. B., Zuber J.-B., “Boundary conditions in rational conformal field theories”, Nuclear Phys. B, 579 (2000), 707–773, arXiv: hep-th/9908036 | DOI | MR | Zbl
[2] Blichfeldt H. F., Finite collineation groups, The University Chicago Press, Chicago, 1917
[3] Cappelli A., D'Appollonio G., “Boundary states of $c=1$ and $c=3/2$ rational conformal field theories”, J. High Energy Phys., 2002:2 (2002), 039, 45 pp., arXiv: hep-th/0201173 | DOI | MR
[4] Cardy J. L., “Boundary conditions, fusion rules and the {V}erlinde formula”, Nuclear Phys. B, 324 (1989), 581–596 | DOI | MR
[5] Cibils C., “Tensor product of {H}opf bimodules over a group”, Proc. Amer. Math. Soc., 125 (1997), 1315–1321 | DOI | MR | Zbl
[6] Coquereaux R., “Character tables (modular data) for Drinfeld doubles of finite groups”, PoS Proc. Sci., PoS (ICMP2012), 2012, 024, 8 pp., arXiv: 1212.4010
[7] Coquereaux R., Isasi E., Schieber G., “Notes on {TQFT} wire models and coherence equations for ${\rm SU}(3)$ triangular cells”, SIGMA, 6 (2010), 099, 44 pp., arXiv: 1007.0721 | DOI | MR | Zbl
[8] Coquereaux R., Zuber J.-B., “On sums of tensor and fusion multiplicities”, J. Phys. A: Math. Theor., 44 (2011), 295208, 26 pp., arXiv: 1103.2943 | DOI | Zbl
[9] Coste A., Gannon T., Ruelle P., “Finite group modular data”, Nuclear Phys. B, 581 (2000), 679–717, arXiv: hep-th/0001158 | DOI | MR | Zbl
[10] Curtis C. W., Reiner I., Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, 11, Interscience Publishers, New York–London, 1962 | MR | Zbl
[11] Di Francesco P., Zuber J.-B.,, “${\rm SU}(N)$ lattice integrable models associated with graphs”, Nuclear Phys. B, 338 (1990), 602–646 | DOI | MR
[12] Dijkgraaf R., Pasquier V., Roche P., “Quasi {H}opf algebras, group cohomology and orbifold models”, Nuclear Phys. B Proc. Suppl., 18 (1991), 60–72 | DOI | MR
[13] Dijkgraaf R., Vafa C., Verlinde E., Verlinde H., “The operator algebra of orbifold models”, Comm. Math. Phys., 123 (1989), 485–526 | DOI | MR | Zbl
[14] Drinfeld V. G., “Quasi-{H}opf algebras”, Leningrad Math. J., 1 (1989), 1419–1457 | MR
[15] Drinfeld V. G., Quasi-Hopf algebras and Knizhnik–Zamolodchikov equations, Preprint ITP-89-43E, Kiev, 1989 | MR
[16] Drinfeld V., Gelaki S., Nikshych D., Ostrik V., “On braided fusion categories, I”, Selecta Math. (N.S.), 16 (2010), 1–119, arXiv: 0906.0620 | DOI | MR | Zbl
[17] Fairbairn W. M., Fulton T., Klink W. H., “Finite and disconnected subgroups of ${\rm SU}_{3}$ and their application to the elementary-particle spectrum”, J. Math. Phys., 5 (1964), 1038–1051 | DOI | MR | Zbl
[18] Feng B., Hanany A., He Y.-H., Prezas N., “Discrete torsion, non-abelian orbifolds and the Schur multiplier”, J. High Energy Phys., 2001:1 (2001), 033, 25 pp., arXiv: hep-th/0010023 | DOI | MR
[19] Finch P. E., Dancer K. A., Isaac P. S., Links J., “Solutions of the Yang–Baxter equation: descendants of the six-vertex model from the Drinfeld doubles of dihedral group algebras”, Nuclear Phys. B, 847 (2011), 387–412, arXiv: 1003.0501 | DOI | MR | Zbl
[20] Flyvbjerg H., “Character table for the $1080$-element point-group-like subgroup of ${\rm SU}(3)$”, J. Math. Phys., 26 (1985), 2985–2989 | DOI | MR | Zbl
[21] Gannon T., Modular data: the algebraic combinatorics of conformal field theory, arXiv: math.QA/0103044 | MR
[22] GAP – Groups, Algorithms, Programming – a system for computational discrete algebra http://www.gap-system.org
[23] Ginsparg P., “Curiosities at $c=1$”, Nuclear Phys. B, 295 (1988), 153–170 | DOI | MR
[24] Grimus W., Ludl P. O., Principal series of finite subgroups of SU(3), arXiv: 1006.0098 | MR
[25] Groupprops, The group properties Wiki http://groupprops.subwiki.org
[26] Hayashi T., A canonical Tannaka duality for finite semisimple tensor categories, arXiv: math.QA/9904073
[27] Hu X., Jing N., Cai W., Generalized McKay quivers of rank three, arXiv: 1207.2823
[28] Huang J.-S., Lectures on representation theory, World Scientific Publishing Co. Inc., River Edge, NJ, 1999 | DOI | MR
[29] Kac V. G., Todorov I. T., “Affine orbifolds and rational conformal field theory extensions of $W_{1+\infty}$”, Comm. Math. Phys., 190 (1997), 57–111, arXiv: hep-th/9612078 | DOI | MR | Zbl
[30] Koornwinder T. H., Schroers B. J., Slingerland J. K., Bais F. A., “Fourier transform and the {V}erlinde formula for the quantum double of a finite group”, J. Phys. A: Math. Gen., 32 (1999), 8539–8549, arXiv: math.QA/9904029 | DOI | MR | Zbl
[31] Ludl P. O., “On the finite subgroups of U(3) of order smaller than 512”, J. Phys. A: Math. Theor., 43 (2010), 395204, 28 pp., arXiv: ; Corrigendum, J. Phys. A: Math. Theor., 44 (2011), 139501 1006.1479 | DOI | MR | Zbl | DOI | MR | Zbl
[32] Ludl P. O., Systematic analysis of finite family symmetry groups and their application to the lepton sector, arXiv: 0907.5587
[33] Luhn C., Nasri S., Ramond P., “Tri-bimaximal neutrino mixing and the family symmetry $\mathbb{Z}_7 \rtimes \mathbb{Z}_3$”, Phys. Lett. B, 652 (2007), 27–33, arXiv: 0706.2341 | DOI
[34] Lusztig G., “Exotic {F}ourier transform”, Duke Math. J., 73 (1994), 227–241 | DOI | MR | Zbl
[35] Lusztig G., “Unipotent representations of a finite {C}hevalley group of type $E_{8}$”, Quart. J. Math. Oxford Ser. (2), 30 (1979), 315–338 | DOI | MR | Zbl
[36] Mathematica, Version 9.0, , Wolfram Research, Inc., Champaign, IL, 2012 http://www.wolfram.com
[37] McKay J., “Graphs, singularities, and finite groups”, The {S}anta {C}ruz {C}onference on {F}inite {G}roups (Univ. {C}alifornia, {S}anta {C}ruz, {C}alif., 1979), Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., 1980, 183–186 | DOI | MR
[38] Ocneanu A., Paths on Coxeter diagrams: from Platonic solids and singularities to minimal models and subfactors, Fields Institute Monographs, Amer. Math. Soc., Providence, RI, 1999
[39] Ogievetsky O., Private communication, 1995
[40] Ostrik V., “Module categories over the {D}rinfeld double of a finite group”, Int. Math. Res. Not., 2003 (2003), 1507–1520, arXiv: math.QA/0202130 | DOI | MR | Zbl
[41] Ostrik V., “Module categories, weak {H}opf algebras and modular invariants”, Transform. Groups, 8 (2003), 177–206, arXiv: math.QA/0111139 | DOI | MR | Zbl
[42] Parattu K. M., Wingerter A., “Tribimaximal mixing from small groups”, Phys. Rev. D, 84 (2011), 013011, 17 pp., arXiv: 1012.2842 | DOI
[43] Petkova V. B., Zuber J.-B., “The many faces of {O}cneanu cells”, Nuclear Phys. B, 603 (2001), 449–496, arXiv: hep-th/0101151 | DOI | MR | Zbl
[44] Roan S.-S., “Minimal resolutions of {G}orenstein orbifolds in dimension three”, Topology, 35 (1996), 489–508 | DOI | MR | Zbl
[45] Schweigert C., Private communication
[46] Thompson M., Towards topological quantum computation? – Knotting and fusing flux tubes, arXiv: 1012.5432
[47] Vafa C., “Modular invariance and discrete torsion on orbifolds”, Nuclear Phys. B, 273 (1986), 592–606 | DOI | MR | Zbl
[48] Verlinde E., “Fusion rules and modular transformations in {$2$}{D} conformal field theory”, Nuclear Phys. B, 300 (1988), 360–376 | DOI | MR | Zbl
[49] Witherspoon S. J., The representation ring of the quantum double of a finite group, Ph. D. thesis, The University of Chicago, 1994 http://www.math.tamu.edu/s̃jw/pub/SJWthesis.pdf | MR
[50] Yau S. S.-T., Yu Y., Gorenstein quotient singularities in dimension three, Mem. Amer. Math. Soc., 105, 1993, viii+88 pp. | MR
[51] Yu J., A note on closed subgroups of compact Lie groups, arXiv: 0912.4497