Drinfeld Doubles for Finite Subgroups of $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ Lie Groups
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Drinfeld doubles of finite subgroups of SU(2) and SU(3) are investigated in detail. Their modular data — $S$, $T$ and fusion matrices — are computed explicitly, and illustrated by means of fusion graphs. This allows us to reexamine certain identities on these tensor product or fusion multiplicities under conjugation of representations that had been discussed in our recent paper [J. Phys. A: Math. Theor. 44 (2011), 295208, 26 pages], proved to hold for simple and affine Lie algebras, and found to be generally wrong for finite groups. It is shown here that these identities fail also in general for Drinfeld doubles, indicating that modularity of the fusion category is not the decisive feature. Along the way, we collect many data on these Drinfeld doubles which are interesting for their own sake and maybe also in a relation with the theory of orbifolds in conformal field theory.
Keywords: Lie group; fusion categories; conformal field theories; quantum symmetry; Drinfeld doubles.
@article{SIGMA_2013_9_a38,
     author = {Robert Coquereaux and Jean-Bernard Zuber},
     title = {Drinfeld {Doubles} for {Finite} {Subgroups} of $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ {Lie} {Groups}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a38/}
}
TY  - JOUR
AU  - Robert Coquereaux
AU  - Jean-Bernard Zuber
TI  - Drinfeld Doubles for Finite Subgroups of $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ Lie Groups
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a38/
LA  - en
ID  - SIGMA_2013_9_a38
ER  - 
%0 Journal Article
%A Robert Coquereaux
%A Jean-Bernard Zuber
%T Drinfeld Doubles for Finite Subgroups of $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ Lie Groups
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a38/
%G en
%F SIGMA_2013_9_a38
Robert Coquereaux; Jean-Bernard Zuber. Drinfeld Doubles for Finite Subgroups of $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ Lie Groups. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a38/

[1] Behrend R. E., Pearce P. A., Petkova V. B., Zuber J.-B., “Boundary conditions in rational conformal field theories”, Nuclear Phys. B, 579 (2000), 707–773, arXiv: hep-th/9908036 | DOI | MR | Zbl

[2] Blichfeldt H. F., Finite collineation groups, The University Chicago Press, Chicago, 1917

[3] Cappelli A., D'Appollonio G., “Boundary states of $c=1$ and $c=3/2$ rational conformal field theories”, J. High Energy Phys., 2002:2 (2002), 039, 45 pp., arXiv: hep-th/0201173 | DOI | MR

[4] Cardy J. L., “Boundary conditions, fusion rules and the {V}erlinde formula”, Nuclear Phys. B, 324 (1989), 581–596 | DOI | MR

[5] Cibils C., “Tensor product of {H}opf bimodules over a group”, Proc. Amer. Math. Soc., 125 (1997), 1315–1321 | DOI | MR | Zbl

[6] Coquereaux R., “Character tables (modular data) for Drinfeld doubles of finite groups”, PoS Proc. Sci., PoS (ICMP2012), 2012, 024, 8 pp., arXiv: 1212.4010

[7] Coquereaux R., Isasi E., Schieber G., “Notes on {TQFT} wire models and coherence equations for ${\rm SU}(3)$ triangular cells”, SIGMA, 6 (2010), 099, 44 pp., arXiv: 1007.0721 | DOI | MR | Zbl

[8] Coquereaux R., Zuber J.-B., “On sums of tensor and fusion multiplicities”, J. Phys. A: Math. Theor., 44 (2011), 295208, 26 pp., arXiv: 1103.2943 | DOI | Zbl

[9] Coste A., Gannon T., Ruelle P., “Finite group modular data”, Nuclear Phys. B, 581 (2000), 679–717, arXiv: hep-th/0001158 | DOI | MR | Zbl

[10] Curtis C. W., Reiner I., Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, 11, Interscience Publishers, New York–London, 1962 | MR | Zbl

[11] Di Francesco P., Zuber J.-B.,, “${\rm SU}(N)$ lattice integrable models associated with graphs”, Nuclear Phys. B, 338 (1990), 602–646 | DOI | MR

[12] Dijkgraaf R., Pasquier V., Roche P., “Quasi {H}opf algebras, group cohomology and orbifold models”, Nuclear Phys. B Proc. Suppl., 18 (1991), 60–72 | DOI | MR

[13] Dijkgraaf R., Vafa C., Verlinde E., Verlinde H., “The operator algebra of orbifold models”, Comm. Math. Phys., 123 (1989), 485–526 | DOI | MR | Zbl

[14] Drinfeld V. G., “Quasi-{H}opf algebras”, Leningrad Math. J., 1 (1989), 1419–1457 | MR

[15] Drinfeld V. G., Quasi-Hopf algebras and Knizhnik–Zamolodchikov equations, Preprint ITP-89-43E, Kiev, 1989 | MR

[16] Drinfeld V., Gelaki S., Nikshych D., Ostrik V., “On braided fusion categories, I”, Selecta Math. (N.S.), 16 (2010), 1–119, arXiv: 0906.0620 | DOI | MR | Zbl

[17] Fairbairn W. M., Fulton T., Klink W. H., “Finite and disconnected subgroups of ${\rm SU}_{3}$ and their application to the elementary-particle spectrum”, J. Math. Phys., 5 (1964), 1038–1051 | DOI | MR | Zbl

[18] Feng B., Hanany A., He Y.-H., Prezas N., “Discrete torsion, non-abelian orbifolds and the Schur multiplier”, J. High Energy Phys., 2001:1 (2001), 033, 25 pp., arXiv: hep-th/0010023 | DOI | MR

[19] Finch P. E., Dancer K. A., Isaac P. S., Links J., “Solutions of the Yang–Baxter equation: descendants of the six-vertex model from the Drinfeld doubles of dihedral group algebras”, Nuclear Phys. B, 847 (2011), 387–412, arXiv: 1003.0501 | DOI | MR | Zbl

[20] Flyvbjerg H., “Character table for the $1080$-element point-group-like subgroup of ${\rm SU}(3)$”, J. Math. Phys., 26 (1985), 2985–2989 | DOI | MR | Zbl

[21] Gannon T., Modular data: the algebraic combinatorics of conformal field theory, arXiv: math.QA/0103044 | MR

[22] GAP – Groups, Algorithms, Programming – a system for computational discrete algebra http://www.gap-system.org

[23] Ginsparg P., “Curiosities at $c=1$”, Nuclear Phys. B, 295 (1988), 153–170 | DOI | MR

[24] Grimus W., Ludl P. O., Principal series of finite subgroups of SU(3), arXiv: 1006.0098 | MR

[25] Groupprops, The group properties Wiki http://groupprops.subwiki.org

[26] Hayashi T., A canonical Tannaka duality for finite semisimple tensor categories, arXiv: math.QA/9904073

[27] Hu X., Jing N., Cai W., Generalized McKay quivers of rank three, arXiv: 1207.2823

[28] Huang J.-S., Lectures on representation theory, World Scientific Publishing Co. Inc., River Edge, NJ, 1999 | DOI | MR

[29] Kac V. G., Todorov I. T., “Affine orbifolds and rational conformal field theory extensions of $W_{1+\infty}$”, Comm. Math. Phys., 190 (1997), 57–111, arXiv: hep-th/9612078 | DOI | MR | Zbl

[30] Koornwinder T. H., Schroers B. J., Slingerland J. K., Bais F. A., “Fourier transform and the {V}erlinde formula for the quantum double of a finite group”, J. Phys. A: Math. Gen., 32 (1999), 8539–8549, arXiv: math.QA/9904029 | DOI | MR | Zbl

[31] Ludl P. O., “On the finite subgroups of U(3) of order smaller than 512”, J. Phys. A: Math. Theor., 43 (2010), 395204, 28 pp., arXiv: ; Corrigendum, J. Phys. A: Math. Theor., 44 (2011), 139501 1006.1479 | DOI | MR | Zbl | DOI | MR | Zbl

[32] Ludl P. O., Systematic analysis of finite family symmetry groups and their application to the lepton sector, arXiv: 0907.5587

[33] Luhn C., Nasri S., Ramond P., “Tri-bimaximal neutrino mixing and the family symmetry $\mathbb{Z}_7 \rtimes \mathbb{Z}_3$”, Phys. Lett. B, 652 (2007), 27–33, arXiv: 0706.2341 | DOI

[34] Lusztig G., “Exotic {F}ourier transform”, Duke Math. J., 73 (1994), 227–241 | DOI | MR | Zbl

[35] Lusztig G., “Unipotent representations of a finite {C}hevalley group of type $E_{8}$”, Quart. J. Math. Oxford Ser. (2), 30 (1979), 315–338 | DOI | MR | Zbl

[36] Mathematica, Version 9.0, , Wolfram Research, Inc., Champaign, IL, 2012 http://www.wolfram.com

[37] McKay J., “Graphs, singularities, and finite groups”, The {S}anta {C}ruz {C}onference on {F}inite {G}roups (Univ. {C}alifornia, {S}anta {C}ruz, {C}alif., 1979), Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., 1980, 183–186 | DOI | MR

[38] Ocneanu A., Paths on Coxeter diagrams: from Platonic solids and singularities to minimal models and subfactors, Fields Institute Monographs, Amer. Math. Soc., Providence, RI, 1999

[39] Ogievetsky O., Private communication, 1995

[40] Ostrik V., “Module categories over the {D}rinfeld double of a finite group”, Int. Math. Res. Not., 2003 (2003), 1507–1520, arXiv: math.QA/0202130 | DOI | MR | Zbl

[41] Ostrik V., “Module categories, weak {H}opf algebras and modular invariants”, Transform. Groups, 8 (2003), 177–206, arXiv: math.QA/0111139 | DOI | MR | Zbl

[42] Parattu K. M., Wingerter A., “Tribimaximal mixing from small groups”, Phys. Rev. D, 84 (2011), 013011, 17 pp., arXiv: 1012.2842 | DOI

[43] Petkova V. B., Zuber J.-B., “The many faces of {O}cneanu cells”, Nuclear Phys. B, 603 (2001), 449–496, arXiv: hep-th/0101151 | DOI | MR | Zbl

[44] Roan S.-S., “Minimal resolutions of {G}orenstein orbifolds in dimension three”, Topology, 35 (1996), 489–508 | DOI | MR | Zbl

[45] Schweigert C., Private communication

[46] Thompson M., Towards topological quantum computation? – Knotting and fusing flux tubes, arXiv: 1012.5432

[47] Vafa C., “Modular invariance and discrete torsion on orbifolds”, Nuclear Phys. B, 273 (1986), 592–606 | DOI | MR | Zbl

[48] Verlinde E., “Fusion rules and modular transformations in {$2$}{D} conformal field theory”, Nuclear Phys. B, 300 (1988), 360–376 | DOI | MR | Zbl

[49] Witherspoon S. J., The representation ring of the quantum double of a finite group, Ph. D. thesis, The University of Chicago, 1994 http://www.math.tamu.edu/s̃jw/pub/SJWthesis.pdf | MR

[50] Yau S. S.-T., Yu Y., Gorenstein quotient singularities in dimension three, Mem. Amer. Math. Soc., 105, 1993, viii+88 pp. | MR

[51] Yu J., A note on closed subgroups of compact Lie groups, arXiv: 0912.4497