@article{SIGMA_2013_9_a37,
author = {Debra Lewis},
title = {Relative {Critical} {Points}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a37/}
}
Debra Lewis. Relative Critical Points. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a37/
[1] Abraham R., Marsden J. E., Foundations of mechanics, Advanced Book Program, 2nd ed., Benjamin/Cummings Publishing Co. Inc., Reading, Mass., 1978 | MR | Zbl
[2] Arms J. M., Cushman R. H., Gotay M. J., “A universal reduction procedure for {H}amiltonian group actions”, The Geometry of {H}amiltonian Systems (Berkeley, {CA}, 1989), Math. Sci. Res. Inst. Publ., 22, Springer, New York, 1991, 33–51 | DOI | MR
[3] Arms J. M., Gotay M. J., Jennings G., “Geometric and algebraic reduction for singular momentum maps”, Adv. Math., 79 (1990), 43–103 | DOI | MR | Zbl
[4] Arms J. M., Marsden J. E., Moncrief V., “Symmetry and bifurcations of momentum mappings”, Comm. Math. Phys., 78 (1981), 455–478 | DOI | MR | Zbl
[5] Arnold V. I., Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1978 | MR | Zbl
[6] Chandrasekhar S., Ellipsoidal figures of equilibrium, Dover, New York, 1987
[7] Chossat P., Lewis D., Ortega J. P., Ratiu T. S., “Bifurcation of relative equilibria in mechanical systems with symmetry”, Adv. in Appl. Math., 31 (2003), 10–45, arXiv: math.DG/9912232 | DOI | MR | Zbl
[8] Cushman R., Sjamaar R., “On singular reduction of {H}amiltonian spaces”, Symplectic Geometry and Mathematical Physics ({A}ix-en-{P}rovence, 1990), Progr. Math., 99, Birkhäuser Boston, Boston, MA, 1991, 114–128 | MR
[9] Dedekind R., “Zusatz zu der vorstehenden {A}bhandlung”, J. Reine Angew. Math., 58 (1861), 217–228 | DOI | Zbl
[10] Dirichlet G. L., “Untersuchungen über ein Problem der Hydrodynamik”, J. Reine Angew. Math., 58 (1861), 181–216 | DOI | Zbl
[11] Fassò F., Lewis D., “Stability properties of the {R}iemann ellipsoids”, Arch. Ration. Mech. Anal., 158 (2001), 259–292, arXiv: math.DG/0002011 | DOI | MR | Zbl
[12] Field M. J., “Equivariant dynamical systems”, Trans. Amer. Math. Soc., 259 (1980), 185–205 | DOI | MR | Zbl
[13] Golubitsky M., Stewart I., “Generic bifurcation of {H}amiltonian systems with symmetry”, Phys. D, 24 (1987), 391–405 | DOI | MR | Zbl
[14] Golubitsky M., Stewart I., Schaeffer D. G., Singularities and groups in bifurcation theory, v. II, Applied Mathematical Sciences, 69, Springer-Verlag, New York, 1988 | DOI | MR | Zbl
[15] Guillemin V., Sternberg S., Symplectic techniques in physics, Cambridge University Press, Cambridge, 1984 | MR
[16] Hazeltine R. D., Holm D. D., Marsden J. E., Morrison P. J., “Generalized Poisson brackets and nonlinear Liapunov stability-application to reduced MHD”, International Conference on Plasma Physics Proceedings (Lausanne), v. 1, eds. M. Q. Tran, M. L. Sawley, Ecole Polytechnique Federale de Lausanne, Lausanne, 1984, 204–206
[17] Holm D. D., Marsden J. E., Ratiu T., Weinstein A., “Nonlinear stability of fluid and plasma equilibria”, Phys. Rep., 123 (1985), 1–116 | DOI | MR | Zbl
[18] Kamran N., Milson R., Olver P. J., “Invariant modules and the reduction of nonlinear partial differential equations to dynamical systems”, Adv. Math., 156 (2000), 286–319, arXiv: solv-int/9904014 | DOI | MR | Zbl
[19] Kogan I. A., Olver P. J., “Invariant {E}uler–{L}agrange equations and the invariant variational bicomplex”, Acta Appl. Math., 76 (2003), 137–193 | DOI | MR | Zbl
[20] Krupa M., “Bifurcations of relative equilibria”, SIAM J. Math. Anal., 21 (1990), 1453–1486 | DOI | MR | Zbl
[21] Lewis D., “Bifurcation of liquid drops”, Nonlinearity, 6 (1993), 491–522 | DOI | MR | Zbl
[22] Lewis D., “Lagrangian block diagonalization”, J. Dynam. Differential Equations, 4 (1992), 1–41 | DOI | MR | Zbl
[23] Lewis D., Marsden J. E., Ratiu T. S., Simo J. C., “Normalizing connections and the energy-momentum method”, Hamiltonian Systems, Transformation Groups and Spectral Transform Methods (Montreal, {PQ}, 1989), Univ. Montréal, Montreal, QC, 1990, 207–227 | MR
[24] Lewis D., Ratiu T., Simo J. C., Marsden J. E., “The heavy top: a geometric treatment”, Nonlinearity, 5 (1992), 1–48 | DOI | MR | Zbl
[25] Lewis D., Simo J. C., “Energy methods in the stability analysis of relative equilibria of {H}amiltonian systems”, The Proceedings of the Sixth Symposium on Continuum Models and Discrete Systems (Dijon, June 1989), ed. G. A. Maugin, Longman, London, 1989, 162–183 | MR
[26] Lewis D., Simo J. C., “Nonlinear stability of rotating pseudo-rigid bodies”, Proc. Roy. Soc. London Ser. A, 427 (1990), 281–319 | DOI | MR | Zbl
[27] Marsden J. E., Ratiu T. S., Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1994 | DOI | MR | Zbl
[28] Marsden J. E., Ratiu T., “Reduction of {P}oisson manifolds”, Lett. Math. Phys., 11 (1986), 161–169 | DOI | MR | Zbl
[29] Marsden J. E., Scheurle J., “Lagrangian reduction and the double spherical pendulum”, Z. Angew. Math. Phys., 44 (1993), 17–43 | DOI | MR | Zbl
[30] Marsden J. E., Simo J. C., Lewis D., Posbergh T. A., “Block diagonalization and the energy-momentum method”, Dynamics and Control of Multibody Systems (Brunswick, ME, 1988), Contemp. Math., 97, Amer. Math. Soc., Providence, RI, 1989, 297–313 | DOI | MR
[31] Marsden J. E., Weinstein A., “Reduction of symplectic manifolds with symmetry”, Rep. Math. Phys., 5 (1974), 121–130 | DOI | MR | Zbl
[32] Meyer K. R., “Symmetries and integrals in mechanics”, Dynamical Systems, Proc. Sympos. (Univ. {B}ahia, {S}alvador, 1971), ed. M. Peixoto, Academic Press, New York, 1973, 259–272 | MR
[33] Montaldi J., “Persistence and stability of relative equilibria”, Nonlinearity, 10 (1997), 449–466 | DOI | MR | Zbl
[34] Olver P. J., Applications of {L}ie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986 | DOI | MR | Zbl
[35] Olver P. J., “Differential invariants”, Acta Appl. Math., 41 (1995), 271–284 | DOI | MR | Zbl
[36] Olver P. J., “Differential invariants and invariant differential equations”, Lie Groups Appl., 1 (1994), 177–192 | MR | Zbl
[37] Olver P. J., “Invariant variational problems and invariant flows via moving frames”, Variations, Geometry and Physics, eds. O. Krupková, D. Saunders, Nova Sci. Publ., New York, 2009, 209–235 | MR | Zbl
[38] Ortega J. P., Ratiu T. S., “The stratified spaces of a symplectic {L}ie group action”, Rep. Math. Phys., 58 (2006), 51–75 | DOI | MR | Zbl
[39] Patrick G. W., Roberts M., Wulff C., “Stability of {P}oisson equilibria and {H}amiltonian relative equilibria by energy methods”, Arch. Ration. Mech. Anal., 174 (2004), 301–344, arXiv: math.DS/0201239 | DOI | MR | Zbl
[40] Patrick G. W., Roberts M., Wulff C., “Stability transitions for axisymmetric relative equilibria of {E}uclidean symmetric {H}amiltonian systems”, Nonlinearity, 21 (2008), 325–352, arXiv: 0705.1552 | DOI | MR | Zbl
[41] Riemann B., “Ein {B}eitrag zu den {U}ntersuchungen über die {B}ewegung eines flüssigen gleichartigen {E}llipsoides”, Abh. d. Königl. Gesell. der Wis. zu Göttingen, 9 (1861), 3–36
[42] Rodríguez-Olmos M., “Stability of relative equilibria with singular momentum values in simple mechanical systems”, Nonlinearity, 19 (2006), 853–877, arXiv: math.DS/0506280 | DOI | MR | Zbl
[43] Rodríguez-Olmos M., Sousa-Dias M. E., “Nonlinear stability of {R}iemann ellipsoids with symmetric configurations”, J. Nonlinear Sci., 19 (2009), 179–219, arXiv: 0712.3081 | DOI | MR | Zbl
[44] Rosensteel G., “Gauge theory of {R}iemann ellipsoids”, J. Phys. A: Math. Gen., 34 (2001), L169–L178 | DOI | MR | Zbl
[45] Rosensteel G., “Geometric quantization of {R}iemann ellipsoids”, Group Theoretical Methods in Physics (Varna, 1987), Lecture Notes in Phys., 313, Springer, Berlin, 1988, 253–260 | DOI | MR
[46] Rosensteel G., “Rapidly rotating nuclei as {R}iemann ellipsoids”, Ann. Physics, 186 (1988), 230–291 | DOI | MR | Zbl
[47] Routh E. J., Advanced rigid dynamics, McMillan and Co., London, 1884
[48] Simo J. C., Lewis D., Marsden J. E., “Stability of relative equilibria. I: The reduced energy-momentum method”, Arch. Rational Mech. Anal., 115 (1991), 15–59 | DOI | MR | Zbl
[49] Simo J. C., Posbergh T. A., Marsden J. E., “Stability of coupled rigid body and geometrically exact rods: block diagonalization and the energy-momentum method”, Phys. Rep., 193 (1990), 279–360 | DOI | MR
[50] Sjamaar R., Lerman E., “Stratified symplectic spaces and reduction”, Ann. of Math. (2), 134 (1991), 375–422 | DOI | MR | Zbl
[51] Smale S., “Topology and mechanics, I”, Invent. Math., 10 (1970), 305–331 | DOI | MR | Zbl
[52] Smale S., “Topology and mechanics. II: The planar {$n$}-body problem”, Invent. Math., 11 (1970), 45–64 | DOI | MR | Zbl
[53] Zombro B., Holmes P., “Reduction, stability, instability and bifurcation in rotationally symmetric {H}amiltonian systems”, Dynam. Stability Systems, 8 (1993), 41–71 | DOI | MR | Zbl