A Note on the Automorphism Group of the Bielawski–Pidstrygach Quiver
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that there exists a morphism between a group $\Gamma^{\mathrm{alg}}$ introduced by G. Wilson and a quotient of the group of tame symplectic automorphisms of the path algebra of a quiver introduced by Bielawski and Pidstrygach. The latter is known to act transitively on the phase space \(\mathcal{C}_{n,2}\) of the Gibbons–Hermsen integrable system of rank $2$, and we prove that the subgroup generated by the image of $\Gamma^{\mathrm{alg}}$ together with a particular tame symplectic automorphism has the property that, for every pair of points of the regular and semisimple locus of \(\mathcal{C}_{n,2}\), the subgroup contains an element sending the first point to the second.
Keywords: Gibbons–Hermsen system; quiver varieties; noncommutative symplectic geometry; integrable systems.
@article{SIGMA_2013_9_a36,
     author = {Igor Mencattini and Alberto Tacchella},
     title = {A {Note} on the {Automorphism} {Group} of the {Bielawski{\textendash}Pidstrygach} {Quiver}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a36/}
}
TY  - JOUR
AU  - Igor Mencattini
AU  - Alberto Tacchella
TI  - A Note on the Automorphism Group of the Bielawski–Pidstrygach Quiver
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a36/
LA  - en
ID  - SIGMA_2013_9_a36
ER  - 
%0 Journal Article
%A Igor Mencattini
%A Alberto Tacchella
%T A Note on the Automorphism Group of the Bielawski–Pidstrygach Quiver
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a36/
%G en
%F SIGMA_2013_9_a36
Igor Mencattini; Alberto Tacchella. A Note on the Automorphism Group of the Bielawski–Pidstrygach Quiver. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a36/

[1] Baranovsky V., Ginzburg V., Kuznetsov A., “Wilson's Grassmannian and a noncommutative quadric”, Int. Math. Res. Not., 2003 (2003), 1155–1197, arXiv: math.AG/0203116 | DOI | MR

[2] Berest Y., Wilson G., “Automorphisms and ideals of the Weyl algebra”, Math. Ann., 318 (2000), 127–147, arXiv: math.QA/0102190 | DOI | MR | Zbl

[3] Bielawski R., Pidstrygach V., “On the symplectic structure of instanton moduli spaces”, Adv. Math., 226 (2011), 2796–2824, arXiv: 0812.4918 | DOI | MR | Zbl

[4] Bocklandt R., Le Bruyn L., “Necklace Lie algebras and noncommutative symplectic geometry”, Math. Z., 240 (2002), 141–167, arXiv: math.AG/0010030 | DOI | MR | Zbl

[5] Dixmier J., “Sur les algèbres de Weyl”, Bull. Soc. Math. France, 96 (1968), 209–242 | MR | Zbl

[6] Gibbons J., Hermsen T., “A generalisation of the Calogero–Moser system”, Phys. D, 11 (1984), 337–348 | DOI | MR | Zbl

[7] Ginzburg V., “Non-commutative symplectic geometry, quiver varieties, and operads”, Math. Res. Lett., 8 (2001), 377–400, arXiv: math.QA/0005165 | MR | Zbl

[8] Kontsevich M., “Formal (non)commutative symplectic geometry”, The Gel'fand Mathematical Seminars, 1990–1992, Birkhäuser Boston, Boston, MA, 1993, 173–187 | MR | Zbl

[9] Makar-Limanov L. G., “On automorphisms of Weyl algebra”, Bull. Soc. Math. France, 112 (1984), 359–363 | MR | Zbl

[10] Makar-Limanov L. G., “The automorphisms of the free algebra with two generators”, Funct. Anal. Appl., 4 (1970), 262–264 | DOI | MR

[11] Nagao H., “On ${\rm GL}(2,K[x])$”, J. Inst. Polytech. Osaka City Univ. Ser. A, 10 (1959), 117–121 | MR | Zbl

[12] Nakajima H., “Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras”, Duke Math. J., 76 (1994), 365–416 | DOI | MR | Zbl

[13] Nekrasov N., Schwarz A., “Instantons on noncommutative $R^4$, and $(2,0)$ superconformal six-dimensional theory”, Comm. Math. Phys., 198 (1998), 689–703, arXiv: hep-th/9802068 | DOI | MR | Zbl

[14] Serre J. P., Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003 | MR

[15] Wilson G., Equivariant maps between Calogero–Moser spaces, arXiv: 1009.3660

[16] Wilson G., Notes on the vector adelic Grassmannian, unpublished, 2009