@article{SIGMA_2013_9_a35,
author = {Jeongoo Cheh},
title = {On {Local} {Congruence} of {Immersions} in {Homogeneous} or {Nonhomogeneous} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a35/}
}
Jeongoo Cheh. On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a35/
[1] Anderson I. M., “Introduction to the variational bicomplex”, Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991), Contemp. Math., 132, Amer. Math. Soc., Providence, RI, 1992, 51–73 | DOI | MR
[2] Fels M., Olver P. J., “Moving coframes. I: A practical algorithm”, Acta Appl. Math., 51 (1998), 161–213 | DOI | MR
[3] Fels M., Olver P. J., “Moving coframes. II: Regularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl
[4] Green M. L., “The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces”, Duke Math. J., 45 (1978), 735–779 | DOI | MR | Zbl
[5] Griffiths P., “On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry”, Duke Math. J., 41 (1974), 775–814 | DOI | MR | Zbl
[6] Hubert E., Olver P. J., “Differential invariants of conformal and projective surfaces”, SIGMA, 3 (2007), 097, 15 pp., arXiv: 0710.0519 | DOI | MR | Zbl
[7] Ivey T. A., Landsberg J. M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, 61, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[8] Kogan I. A., Olver P. J., “Invariant Euler–Lagrange equations and the invariant variational bicomplex”, Acta Appl. Math., 76 (2003), 137–193 | DOI | MR | Zbl
[9] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, 2nd ed., Springer-Verlag, New York, 1993 | MR | Zbl
[10] Olver P. J., Differential invariants of surfaces, 27 (2009), 230–239 | DOI | MR | Zbl
[11] Olver P. J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[12] Olver P. J., “Moving frames and differential invariants in centro-affine geometry”, Lobachevskii J. Math., 31 (2010), 77–89 | DOI | MR | Zbl
[13] Olver P. J., Pohjanpelto J., “Differential invariant algebras of Lie pseudo-groups”, Adv. Math., 222 (2009), 1746–1792 | DOI | MR | Zbl
[14] Olver P. J., Pohjanpelto J., “Moving frames for Lie pseudo-groups”, Canad. J. Math., 60 (2008), 1336–1386 | DOI | MR | Zbl
[15] Sternberg S., Lectures on differential geometry, 2nd ed., Chelsea Publishing Co., New York, 1983 | MR | Zbl
[16] Warner F. W., Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, 94, Springer-Verlag, New York, 1983 | MR | Zbl