@article{SIGMA_2013_9_a32,
author = {Jo\~ao Paulo dos Santos and Keti Tenenblat},
title = {The {Symmetry} {Group} of {Lam\'e's} {System} and the {Associated} {Guichard} {Nets} for {Conformally} {Flat} {Hypersurfaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a32/}
}
TY - JOUR AU - João Paulo dos Santos AU - Keti Tenenblat TI - The Symmetry Group of Lamé's System and the Associated Guichard Nets for Conformally Flat Hypersurfaces JO - Symmetry, integrability and geometry: methods and applications PY - 2013 VL - 9 UR - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a32/ LA - en ID - SIGMA_2013_9_a32 ER -
%0 Journal Article %A João Paulo dos Santos %A Keti Tenenblat %T The Symmetry Group of Lamé's System and the Associated Guichard Nets for Conformally Flat Hypersurfaces %J Symmetry, integrability and geometry: methods and applications %D 2013 %V 9 %U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a32/ %G en %F SIGMA_2013_9_a32
João Paulo dos Santos; Keti Tenenblat. The Symmetry Group of Lamé's System and the Associated Guichard Nets for Conformally Flat Hypersurfaces. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a32/
[1] Barbosa J. L., Ferreira W., Tenenblat K., “Submanifolds of constant sectional curvature in pseudo-Riemannian manifolds”, Ann. Global Anal. Geom., 14 (1996), 381–401 | DOI | MR | Zbl
[2] Cartan E., “La déformation des hypersurfaces dans l'espace conforme réel à {$n \ge 5$} dimensions”, Bull. Soc. Math. France, 45 (1917), 57–121 | MR | Zbl
[3] Corro A. V., Martínez A., Milán F., “Complete flat surfaces with two isolated singularities in hyperbolic 3-space”, J. Math. Anal. Appl., 366 (2010), 582–592, arXiv: 0905.2371 | DOI | MR | Zbl
[4] Ferreira W., Soluções invariantes pelos grupos de simetria de Lie das Equações Generalizadas Intrínsecas de Laplace e de sinh-Gordon elíptica e propriedades geométricas das subvariedades associadas, Ph. D. thesis, Universidade de Brasília, 1994 | Zbl
[5] Gálvez J. A., Martínez A., Milán F., “Flat surfaces in the hyperbolic $3$-space”, Math. Ann., 316 (2000), 419–435 | DOI | MR
[6] Guichard C., Sur les systèmes triplement indéterminés et sur les systèmes triplement orthogonaux, Gauthier-Villars, Paris, 1905 | Zbl
[7] Hertrich-Jeromin U., Introduction to Möbius differential geometry, London Mathematical Society Lecture Note Series, 300, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl
[8] Hertrich-Jeromin U., “On conformally flat hypersurfaces and Guichard's nets”, Beiträge Algebra Geom., 35 (1994), 315–331 | MR | Zbl
[9] Hertrich-Jeromin U., Suyama Y., “Conformally flat hypersurfaces with Bianchi-type Guichard nets”, Osaka J. Math. (to appear)
[10] Hertrich-Jeromin U., Suyama Y., “Conformally flat hypersurfaces with cyclic Guichard net”, Internat. J. Math., 18 (2007), 301–329 | DOI | MR | Zbl
[11] Kokubu M., Rossman W., Saji K., Umehara M., Yamada K., “Singularities of flat fronts in hyperbolic space”, Pacific J. Math., 221 (2005), 303–351, arXiv: math.DG/0401110 | DOI | MR | Zbl
[12] Kokubu M., Umehara M., Yamada K., “Flat fronts in hyperbolic 3-space”, Pacific J. Math., 216 (2004), 149–175, arXiv: math.DG/0301224 | DOI | MR | Zbl
[13] Lafontaine J., “Conformal geometry from the Riemannian viewpoint”, Conformal Geometry (Bonn, 1985/1986), Aspects Math. E, 12, Vieweg, Braunschweig, 1988, 65–92 | MR
[14] Lamé G., Leçons sur les coordonnés curvilignes et leurs diverses applications, Mallet-Bachelier, Paris, 1859
[15] Lie S., Theorie der Transformationsgruppen, B. G. Teubner, Leipzig, 1888; 1890; 1893
[16] Martinez A., dos Santos J. P., Tenenblat K., “Helicoidal flat surfaces in the hyperbolic 3-space”, Pacific J. Math. (to appear)
[17] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986 | DOI | MR | Zbl
[18] Olver P. J., “Symmetry groups and group invariant solutions of partial differential equations”, J. Differential Geom., 14 (1979), 497–542 | MR | Zbl
[19] Rabelo M. L., Tenenblat K., “Submanifolds of constant nonpositive curvature”, Mat. Contemp., 1 (1991), 71–81 | MR | Zbl
[20] Suyama Y., “Conformally flat hypersurfaces in Euclidean 4-space”, Nagoya Math. J., 158 (2000), 1–42 | MR | Zbl
[21] Suyama Y., “Conformally flat hypersurfaces in Euclidean 4-space, II”, Osaka J. Math., 42 (2005), 573–598 | MR | Zbl
[22] Suyama Y., “Conformally flat hypersurfaces in Euclidean 4-space and a class of Riemannian 3-manifolds”, Sūrikaisekikenkyūsho Kōkyūroku, 2001, no. 1236, 60–89 | MR | Zbl
[23] Tenenblat K., Transformations of manifolds and applications to differential equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, 93, Longman, Harlow, 1998 | MR | Zbl
[24] Tenenblat K., Winternitz P., “On the symmetry groups of the intrinsic generalized wave and sine-{G}ordon equations”, J. Math. Phys., 34 (1993), 3527–3542 | DOI | MR | Zbl