@article{SIGMA_2013_9_a31,
author = {Carla Farsi and Hans-Christian Herbig and Christopher Seaton},
title = {On {Orbifold} {Criteria} for {Symplectic} {Toric} {Quotients}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a31/}
}
TY - JOUR AU - Carla Farsi AU - Hans-Christian Herbig AU - Christopher Seaton TI - On Orbifold Criteria for Symplectic Toric Quotients JO - Symmetry, integrability and geometry: methods and applications PY - 2013 VL - 9 UR - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a31/ LA - en ID - SIGMA_2013_9_a31 ER -
Carla Farsi; Hans-Christian Herbig; Christopher Seaton. On Orbifold Criteria for Symplectic Toric Quotients. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a31/
[1] Barthel G., Brasselet J. P., Fieseler K. H., Kaup L., “Combinatorial intersection cohomology for fans”, Tohoku Math. J., 54 (2002), 1–41, arXiv: math.AG/0002181 | DOI | MR | Zbl
[2] Bosio F., Meersseman L., “Real quadrics in $C^n$, complex manifolds and convex polytopes”, Acta Math., 197 (2006), 53–127, arXiv: math.GT/0405075 | DOI | MR | Zbl
[3] Brøndsted A., An introduction to convex polytopes, Graduate Texts in Mathematics, 90, Springer-Verlag, New York, 1983 | MR
[4] Cox D. A., Little J. B., Schenck H. K., Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, Providence, RI, 2011 | MR | Zbl
[5] Coxeter H. S. M., Regular complex polytopes, 2nd ed., Cambridge University Press, Cambridge, 1991 | MR | Zbl
[6] Cushman R., Sjamaar R., “On singular reduction of Hamiltonian spaces”, Symplectic Geometry and Mathematical Physics (Aix-en-Provence, 1990), Progr. Math., 99, Birkhäuser Boston, Boston, MA, 1991, 114–128 | MR
[7] Cushman R., Śniatycki J., “Differential structure of orbit spaces”, Canad. J. Math., 53 (2001), 715–755 | DOI | MR
[8] Du Val P., Homographies, quaternions and rotations, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964 | MR
[9] Dunbar W. D., Greenwald S. J., McGowan J., Searle C., “Diameters of 3-sphere quotients”, Differential Geom. Appl., 27 (2009), 307–319, arXiv: math.DG/0702680 | DOI | MR | Zbl
[10] Eisenbud D., The geometry of syzygies. A second course in commutative algebra and algebraic geometry, Graduate Texts in Mathematics, 229, Springer-Verlag, New York, 2005 | MR | Zbl
[11] Falbel E., Paupert J., “Fundamental domains for finite subgroups in $U(2)$ and configurations of Lagrangians”, Geom. Dedicata, 109 (2004), 221–238 | DOI | MR | Zbl
[12] Fulton W., Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl
[13] Gessel I. M., “Generating functions and generalized Dedekind sums”, Electron. J. Combin., 4:2 (1997), 11, 17 pp. | MR
[14] Gotay M. J., Bos L., “Singular angular momentum mappings”, J. Differential Geom., 24 (1986), 181–203 | MR | Zbl
[15] Haefliger A., “Groupoïdes d'holonomie et classifiants”, Astérisque, 116, 1984, 70–97 | MR | Zbl
[16] Hatcher A., Vogtmann K., “Rational homology of ${\rm Aut}(F_n)$”, Math. Res. Lett., 5 (1998), 759–780 | MR | Zbl
[17] Herbig H. C., Iyengar S. B., Pflaum M. J., “On the existence of star products on quotient spaces of linear Hamiltonian torus actions”, Lett. Math. Phys., 89 (2009), 101–113, arXiv: 0811.2152 | DOI | MR | Zbl
[18] Lerman E., Montgomery R., Sjamaar R., “Examples of singular reduction”, Symplectic Geometry, London Math. Soc. Lecture Note Ser., 192, Cambridge University Press, Cambridge, 1993, 127–155 | MR | Zbl
[19] Marsden J., Weinstein A., “Reduction of symplectic manifolds with symmetry”, Rep. Math. Phys., 5 (1974), 121–130 | DOI | MR | Zbl
[20] Mather J. N., “Differentiable invariants”, Topology, 16 (1977), 145–155 | DOI | MR | Zbl
[21] Meyer K. R., “Symmetries and integrals in mechanics”, Dynamical Systems, Proc. Sympos. (Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, 259–272 | MR
[22] Molien T., “Über die Invarianten der linearen Substitutionsgruppen”, Sitzungsber. der Königl. Preuss. Akad. d. Wiss., v. 2, 1897, 1152–1156 | Zbl
[23] Multarzyński P., Żekanowski Z., “On general Hamiltonian dynamical systems in differential spaces”, Demonstratio Math., 24 (1991), 539–555 | MR | Zbl
[24] Navarro González J. A., Sancho de Salas J. B., $C^\infty$-differentiable spaces, Lecture Notes in Mathematics, 1824, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl
[25] Pflaum M. J., Analytic and geometric study of stratified spaces, Lecture Notes in Mathematics, 1768, Springer-Verlag, Berlin, 2001 | MR | Zbl
[26] Schwarz G. W., “Smooth functions invariant under the action of a compact Lie group”, Topology, 14 (1975), 63–68 | DOI | MR | Zbl
[27] Schwarz G. W., “The topology of algebraic quotients”, Topological Methods in Algebraic Transformation Groups (New Brunswick, NJ, 1988), Progr. Math., 80, Birkhäuser Boston, Boston, MA, 1989, 135–151 | MR
[28] Sikorski R., Wstȩp do geometrii różniczkowej, Biblioteka Matematyczna, 42, Państwowe Wydawnictwo Naukowe, Warsaw, 1972 | MR | Zbl
[29] Sjamaar R., Lerman E., “Stratified symplectic spaces and reduction”, Ann. of Math. (2), 134 (1991), 375–422 | DOI | MR | Zbl
[30] Spanier E. H., Algebraic topology, Springer-Verlag, New York, 1981 | MR
[31] Sturmfels B., Algorithms in invariant theory, Texts and Monographs in Symbolic Computation, Springer-Verlag, Vienna, 1993 | MR